[1] 孙铁玉. 海南冬季瓜菜产销现状与发展对策 [J]. 中国瓜菜, 2022, 35(7): 105-109.
[2] LIANG D, LIU M, HU Q, et al. Identification of differentially expressed genes related to aphid resistance in cucumber (Cucumis sativus L.) [J]. Scientific Reports, 2015, 5: 9645.
[3] HART A, BROWN C D, LEWIS K A, et al. P-EMA (II): evaluating ecological risks of pesticides for a farm-level risk assessment system [J]. Agronomie, 2003, 23(1): 75-84.
[4] 潘明真, 张毅, 曹贺贺, 等. 我国主要农作物蚜虫生物防治的研究进展、应用与展望 [J]. 植物保护学报, 2022, 49(1): 146-172.
[5] KUNERT G, WEISSER W W. The interplay between density and trait-mediated effects in predator-prey interactions: a case study in aphid wing polymorphism [J]. Oecologia, 2003, 135(2): 304-312.
[6] HERMANN S L, THALER J S. Prey perception of predation risk: volatile chemical cues mediate non-consumptive effects of a predator on a herbivorous insect [J]. Oecologia, 2014, 176(3): 669-676.
[7] NINKOVIC V, FENG Y, OLSSON U, et al. Ladybird footprints induce aphid avoidance behavior [J]. Biological Control, 2013, 65(1): 63-71.
[8] XIONG X, MICHAUD J P, LI Z, et al. Chronic, predator-induced stress alters development and reproductive performance of the cotton bollworm, Helicoverpa armigera [J]. Biocontrol, 2015, 60(6): 827-837.
[9] 李燕平, 戈峰. 龟纹瓢虫的捕食胁迫作用对连续三代果蝇发育与繁殖的影响 [J]. 昆虫知识, 2010, 47(1): 139-145.
[10] NELSON E H. Predator avoidance behavior in the pea aphid: costs, frequency, and population consequences [J]. Oecologia, 2007, 151(1): 22-32.
[11] RELYEA R A. Trait-mediated indirect effects in larval anurans: reversing competition with the threat of predation [J]. Ecology, 2000, 81(8): 2278-2289.
[12] NAKAOKA M. Nonlethal effects of predators on prey populations: predator-mediated change in bivalve growth [J]. Ecology, 2000, 81(4): 1031-1045.
[13] PATEL A K, SINGH V, PATEL P, et al. Semiochemical footprints of the predaceous coccinellid beetle, Menochilus sexmaculatus, deter Zygogramma bicolorata (Coleoptera: Chrysomelidae) from feeding on Parthenium [J]. Biocontrol Science and Technology, 2019, 29(2): 201-205.
[14] HERMANN S L, BIRD S A, ELLIS D R, et al. Predation risk differentially affects aphid morphotypes: impacts on prey behavior, fecundity and transgenerational dispersal morphology [J]. Oecologia, 2021, 197(2): 411-419.
[15] NOMIKOU M, JANSSEN A, SABELIS M W. Herbivore host plant selection: whitefly learns to avoid host plants that harbour predators of her offspring [J]. Oecologia, 2003, 136(3): 484-488.
[16] MONDOR E B, ROITBERG B D. Pea aphid, Acyrthosiphon pisum, cornicle ontogeny as an adaptation to differential predation risk [J]. Canadian Journal of Zoology, 2002, 80(12): 2131-2136.
[17] RENDON D, WHITEHOUSE M E A, TAYLOR P W. Consumptive and non-consumptive effects of wolf spiders on cotton bollworms [J]. Entomologia Experimentalis et Applicata, 2016, 158(2): 170-183.
[18] HERMANN S L, LANDIS D A. Scaling up our understanding of non-consumptive effects in insect systems [J]. Current Opinion in Insect Science, 2017, 20: 54-60.
[19] 凡泽云. 丽蚜小蜂胁迫对烟粉虱生长发育、生殖的影响及其生理机制 [D]. 广州: 华南农业大学, 2018.
[20] VENKANNA Y, SUROSHE S S, DAHUJA A. Non-consumptive effects of the zigzag ladybird beetle, Cheilomenes sexmaculata (Fab.) on its prey, the cotton aphid, Aphis gossypii Glover [J]. Biocontrol Science and Technology, 2021, 31(11): 1204-1219.
[21] 熊晓菲. 捕食性天敌胁迫对棉铃虫发育、行为及生理的影响研究 [D]. 北京: 中国农业大学, 2015.
[22] 李姣. 龟纹瓢虫、蚜茧蜂对棉蚜生长发育、繁殖与适合度的间接影响 [D]. 长沙: 湖南农业大学, 2008.
[23] 李姣, 龙大彬, 肖铁光, 等. 蚜茧蜂对多世代棉蚜生长发育与繁殖的胁迫作用 [J]. 应用昆虫学报, 2013, 50(4): 951-958.
[24] 王波. 异色瓢虫的非取食效应对豌豆蚜适应性的影响 [D]. 杨凌: 西北农林科技大学, 2020.
[25] SU J, ZHU S, ZHANG Z, et al. Effect of Synthetic Aphid Alarm Pheromone (E)-β-Farnesene on Development and Reproduction of Aphis gossypii (Homoptera: Aphididae) [J]. Journal of Economic Entomology, 2006, 99(5): 1636-1640.
[26] FAN L P, OUYANG F, SU J W, et al. Adaptation of Defensive Strategies by the Pea Aphid Mediates Predation Risk from the Predatory Lady Beetle [J]. Journal of Chemical Ecology, 2018, 44(1): 40-50.