| [1] | Mann M, Jensen O N. Proteomic analysis of post-translational modifications [J]. Nature Biotechnology, 2003, 21(3): 255−261. https://doi.org/10.1038/nbt0303-255 doi: 10.1038/nbt0303-255 |
| [2] | Olsen J V, Mann M. Status of large-scale analysis of post-translational modifications by mass spectrometry [J]. Molecular & Cellular Proteomics, 2013, 12(12): 3444−3452. |
| [3] | Khoury G A, Baliban R C, Floudas C A. Proteome-wide post-translational modification statistics: frequency analysis and curation of the Swiss-prot database [J]. Scientific Reports, 2011, 1: 90. https://doi.org/10.1038/srep00090 doi: 10.1038/srep00090 |
| [4] | Huang Y, Xu B, Zhou X, et al. Systematic characterization and prediction of post-translational modification cross-talk [J]. Molecular & Cellular Proteomics, 2015, 14(3): 761−770. |
| [5] | 陈艳梅. 蛋白质翻译后修饰之间的互作关系及其协同调控机理[J]. 生物技术通报, 2024, 40(2): 1−8. |
| [6] | Sun L, Yao Z, Guo Z, et al. Comprehensive analysis of the lysine acetylome in Aeromonas hydrophila reveals cross-talk between lysine acetylation and succinylation in LuxS [J]. Emerging Microbes & Infections, 2019, 8(1): 1229−1239. |
| [7] | Lund J, Aas V, Tingstad R H, et al. Utilization of lactic acid in human myotubes and interplay with glucose and fatty acid metabolism [J]. Scientific Reports, 2018, 8(1): 9814. https://doi.org/10.1038/s41598-018-28249-5 doi: 10.1038/s41598-018-28249-5 |
| [8] | Cai X, Ng C P, Jones O, et al. Lactate activates the mitochondrial electron transport chain independently of its metabolism [J]. Molecular Cell, 2023, 83(21): 3904−3920. https://doi.org/10.1016/j.molcel.2023.09.034 doi: 10.1016/j.molcel.2023.09.034 |
| [9] | Duan J, Li C, Zheng Y, et al. Characterization of exogenous lactate addition on the growth, photosynthetic performance, and biochemical composition of four bait microalgae strains [J]. Journal of Applied Microbiology, 2023, 134(11): lxad259. https://doi.org/10.1093/jambio/lxad259 doi: 10.1093/jambio/lxad259 |
| [10] | Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation [J]. Nature, 2019, 574(7779): 575−580. https://doi.org/10.1038/s41586-019-1678-1 doi: 10.1038/s41586-019-1678-1 |
| [11] | Wang Z A, Cole P A. The chemical biology of reversible lysine post-translational modifications [J]. Cell Chemical Biology, 2020, 27(8): 953−969. https://doi.org/10.1016/j.chembiol.2020.07.002 doi: 10.1016/j.chembiol.2020.07.002 |
| [12] | Stacpoole P W, Dirain C O. The pyruvate dehydrogenase complex at the epigenetic crossroads of acetylation and lactylation [J]. Molecular Genetics and Metabolism, 2024, 143(1/2): 108540. |
| [13] | Yang Y, Luo N, Gong Z, et al. Lactate and lysine lactylation of histone regulate transcription in cancer [J]. Heliyon, 2024, 10(21): e38426. https://doi.org/10.1016/j.heliyon.2024.e38426 doi: 10.1016/j.heliyon.2024.e38426 |
| [14] | Huang A, Li Y, Duan J, et al. Metabolomic, proteomic and lactylated proteomic analyses indicate lactate plays important roles in maintaining energy and C: N homeostasis in Phaeodactylum tricornutum [J]. Biotechnology for Biofuels and Bioproducts, 2022, 15(1): 61. https://doi.org/10.1186/s13068-022-02152-8 doi: 10.1186/s13068-022-02152-8 |
| [15] | Chen Z, Luo L, Chen R, et al. Acetylome profiling reveals extensive lysine acetylation of the fatty acid metabolism pathway in the diatom Phaeodactylum tricornutum [J]. Molecular & Cellular Proteomics, 2018, 17(3): 399−412. |
| [16] | Zhao D, Zou S W, Liu Y, et al. Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer [J]. Cancer Cell, 2013, 23(4): 464−476. https://doi.org/10.1016/j.ccr.2013.02.005 doi: 10.1016/j.ccr.2013.02.005 |
| [17] | Liu M, Huo M, Liu C, et al. Lysine acetylation of Escherichia coli lactate dehydrogenase regulates enzyme activity and lactate synthesis [J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 966062. https://doi.org/10.3389/fbioe.2022.966062 doi: 10.3389/fbioe.2022.966062 |
| [18] | Hayashi S I, Lin E C C. Purification and properties of glycerol kinase from Escherichia coli [J]. Journal of Biological Chemistry, 1967, 242(5): 1030−1035. https://doi.org/10.1016/S0021-9258(18)96228-9 doi: 10.1016/S0021-9258(18)96228-9 |
| [19] | Young C L, Britton Z T, Robinson A S. Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications [J]. Biotechnology Journal, 2012, 7(5): 620−634. https://doi.org/10.1002/biot.201100155 doi: 10.1002/biot.201100155 |
| [20] | 赵蕾, 李辉, 覃水平, 等. 猪TGF-βⅡ型受体胞外域的表达及生物活性验证[J]. 江苏农业学报, 2024, 40(7): 1268−1275. https://doi.org/10.3969/j.issn.1000-4440.2024.07.013 doi: 10.3969/j.issn.1000-4440.2024.07.013 |
| [21] | 刘晓玥, 董庆文, 许赢, 等. 玉米ZmERF061基因原核表达载体构建及蛋白表达分析[J/OL]. 分子植物育种, (2024-03-21)[2024-12-13]. http://link.cnki.net/urlid/46.1068.s.20240320.1148.011. |