| [1] | 何应对. 香蕉幼苗根系对缺钾胁迫的响应及分子机制研究[D]. 武汉: 华中农业大学, 2021. doi: 10.27158/d.cnki.ghznu.2021.000152 |
| [2] | 曾鸿运, 吴元立, 黄秉智. 中国香蕉育种研究进展[J]. 果树学报, 2023, 40(11): 2446 − 2465. doi: 10.13925/j.cnki.gsxb.20230151 |
| [3] | HUANG P H, CHENG Y T, LU W C, et al. Changes in nutrient content and physicochemical properties of Cavendish bananas var. Pei chiao during ripening[J]. Horticulturae, 2024, 10(4): 384. doi: 10.3390/horticulturae10040384 |
| [4] | ANYASI T A, JIDEANI A I O, MCHAU G A. Morphological, physicochemical, and antioxidant profile of noncommercial banana cultivars[J]. Food Science & Nutrition, 2015, 3(3): 221 − 232. doi: 10.1002/fsn3.208 |
| [5] | 王芳, 谢江辉. 我国香蕉产业“十三五” 回顾与“十四五” 展望[J]. 中国热带农业, 2022(3): 15 − 22 doi: 10.3969/j.issn.1673-0658.2022.03.003 |
| [6] | 许林兵, 张锡炎, 甘东泉, 等. ‘海贡蕉’引种试种研究[J]. 热带农业科学, 2013, 33(8): 24 − 28. doi: 10.3969/j.issn.1009-2196.2013.08.007 |
| [7] | 黄思豪, 王丽霞, 刘永霞, 等. 基于机器学习算法预测香蕉产量[J]. 热带生物学报, 2025, 16(1): 21 − 30. doi: 10.15886/j.cnki.rdswxb.20240031 |
| [8] | 刘雪红, 吴坤林, 陈国华, 等. “金手指”香蕉的组织培养和快速繁殖[J]. 中国南方果树, 2006, 35(1): 34 − 35. doi: 10.3969/j.issn.1007-1431.2006.01.017 |
| [9] | 唐文, 李凯, 李羽佳, 等. 优质绿色皇帝蕉栽培管理技术[J]. 分子植物育种, 2018, 16(8): 2730 − 2735. doi: 10.13271/j.mpb.016.002730 |
| [10] | 陈海斌. 香蕉氮磷钾钙镁硫胁迫下的营养特性与营养诊断研究[D]. 广州: 华南农业大学, 2017. |
| [11] | 王衍安. 苹果树锌运转分配及缺锌对其生理特性影响的研究[D]. 泰安: 山东农业大学, 2007. doi: 10.7666/d.Y1094387 |
| [12] | CHEN L H, XU M, CHENG Z X, et al. Effects of nitrogen deficiency on the photosynthesis, chlorophyll a fluorescence, antioxidant system, and sulfur compounds in Oryza sativa[J]. International Journal of Molecular Sciences, 2024, 25(19): 10409. doi: 10.3390/ijms251910409 |
| [13] | SHENG Y J, DING Y W, FU Y Y, et al. The research development of the response mechanisms to magnesium stresses in plants[J]. Botanical Research, 2015, 4(5): 97 − 106. doi: 10.12677/BR.2015.45012 |
| [14] | ZHOU Z X, STRUIK P C, GU J F, et al. Enhancing leaf photosynthesis from altered chlorophyll content requires optimal partitioning of nitrogen[J]. Crop and Environment, 2023, 2(1): 24 − 36. doi: 10.1016/j.crope.2023.02.001 |
| [15] | 侯扶江, 郑文菊. 紫外线-B辐射与3种植物幼苗的光合作用: 光合作用对紫外线-B敏感性的比较[J]. 西北植物学报, 2000, 20(2): 218 − 223. doi: 10.3321/j.issn:1000-4025.2000.02.011 |
| [16] | HAVAUX M, LANNOYE R, 周宽余. 用叶绿素荧光试验快速测定硬粒小麦栽培品种的抗旱性[J]. 麦类作物学报, 1987(2): 32 − 33. |
| [17] | LICHTENTHALER H K, RINDERLE U. The role of chlorophyll fluorescence in the detection of stress conditions in plants[J]. C R C Critical Reviews in Analytical Chemistry, 1988, 19(S1): 29 − 85. doi: 10.1080/15476510.1988.10401466 |
| [18] | 周春艳. 植物叶片叶绿素荧光动力学成像探测方法与应用研究[D]. 西安: 西安理工大学, 2019. doi: 10.27398/d.cnki.gxalu.2019.000026 |
| [19] | HE H S, WU X R, KHAN S, et al. Phenotypic variations in banana cultivars in the utilization and tolerance to different magnesium levels[J]. Horticulturae, 2023, 9(9): 1017. doi: 10.3390/horticulturae9091017 |
| [20] | 黄筱涵, 宋思情, 龙丽君, 等. 铅锌胁迫对凹叶厚朴幼苗生理特性的影响[J]. 中南林业科技大学学报, 2023, 43(7): 82 − 90. doi: 10.14067/j.cnki.1673-923x.2023.07.008 |
| [21] | 安晓静, 刘尚年, 王海英, 等. 中微量营养元素在药用植物栽培中的应用进展[J]. 中药材, 2024, 47(4): 1045 − 1052. doi: 10.13863/j.issn1001-4454.2024.04.041 |
| [22] | 刘桂兰. 微量元素对植物生长发育的作用[J]. 现代农村科技, 2009(3): 55. doi: 10.3969/j.issn.1674-5329.2009.03.056 |
| [23] | 林姜岑, 王子豪, 王子琨, 等. 钙、镁缺乏对香蕉幼苗生长及养分吸收的影响[J]. 中国果树, 2023(5): 70 − 75. doi: 10.16626/j.cnki.issn1000-8047.2023.05.012 |
| [24] | WINTER K, SCHRAMM M J. Analysis of stomatal and nonstomatal components in the environmental control of CO2 exchange in leaves of Welwitschia mirabilis[J]. Plant Physiology, 1986, 82(1): 173 − 178. doi: 10.1104/pp.82.1.173 |
| [25] | THOMAS D S, TURNER D W. Banana (Musa sp. ) leaf gas exchange and chlorophyll fluorescence in response to soil drought, shading and Lamina folding[J]. Scientia Horticulturae, 2001, 90(1/2): 93 − 108. doi: 10.1016/S0304-4238(00)00260-0 |
| [26] | FARQUHAR G D, SHARKEY T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Biology, 1982, 33: 317 − 345. doi: 10.1146/annurev.pp.33.060182.001533 |
| [27] | 高吉权. 铅锌胁迫对毛红椿叶片气体交换和叶绿素荧光的影响[D]. 长沙: 中南林业科技大学, 2019. |
| [28] | 陈晓亚, 汤章城. 植物生理与分子生物学[M]. 3版. 北京: 高等教育出版社, 2007. |
| [29] | 葛晋金, 孙晓娜, 张丽平, 等. 缺钾对香蕉光合特性和矿质元素含量的影响[J]. 江苏农业科学, 2022, 50(4): 105 − 109. doi: 10.15889/j.issn.1002-1302.2022.04.018 |
| [30] | 李紫琴. 不同水分处理下棉花叶片光合参数与叶绿素荧光的高光谱监测研究[D]. 阿拉尔: 塔里木大学, 2023. doi: 10.27708/d.cnki.gtlmd.2023.000370 |
| [31] | KALAJI H M, SCHANSKER G, LADLE R J, et al. Frequently asked questions about in vivo chlorophyll fluorescence: practical issues[J]. Photosynthesis Research, 2014, 122(2): 121 − 158. doi: 10.1007/s11120-014-0024-6 |
| [32] | GUO Y, TAN J L. Recent advances in the application of chlorophyll a fluorescence from photosystem Ⅱ[J]. Photochemistry and Photobiology, 2015, 91(1): 1 − 14. doi: 10.1111/php.12362 |
| [33] | PORCAR-CASTELL A, MALENOVSKÝ Z, MAGNEY T, et al. Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science[J]. Nature Plants, 2021, 7(8): 998 − 1009. doi: 10.1038/s41477-021-00980-4 |
| [34] | BOLHÀR-NORDENKAMPF H R, ÖQUIST G. Chlorophyll fluorescence as a tool in photosynthesis research[M]//HALL D O, SCURLOCK J M O, BOLHÀR-NORDENKAMPF H R, et al. Photosynthesis and Production in a Changing Environment. Dordrecht: Springer, 1993: 193−206. doi: 10.1007/978-94-011-1566-7_12 |
| [35] | 夏倩. 基于叶绿素荧光的水稻干旱检测技术研究[D]. 无锡: 江南大学, 2023. doi: 10.27169/d.cnki.gwqgu.2023.002565 |
| [36] | 刘韵诗. 缺素与黄龙病对柑橘叶片叶绿素荧光特性和初生代谢的影响[D]. 福州: 福建农林大学, 2023. doi: 10.27018/d.cnki.gfjnu.2023.000602 |
| [37] | FRIEDL C, FEDOROV D G, RENGER T. Towards a quantitative description of excitonic couplings in photosynthetic pigment-protein complexes: quantum chemistry driven multiscale approaches[J]. Physical Chemistry Chemical Physics, 2022, 24(8): 5014 − 5038. doi: 10.1039/D1CP03566E |
| [38] | ARIEF M A A, KIM H, KURNIAWAN H, et al. Chlorophyll fluorescence imaging for early detection of drought and heat stress in strawberry plants[J]. Plants, 2023, 12(6): 1387. doi: 10.3390/plants12061387 |
| [39] | 董贞芬. 低温胁迫下番茄幼苗叶绿素荧光成像的分析及研究[D]. 沈阳: 沈阳农业大学, 2019. doi: 10.27327/d.cnki.gshnu.2019.000682 |