[1] DEAN R, VAN KAN J A L, PRETORIUS Z A, et al. The Top 10 fungal pathogens in molecular plant pathology [J]. Molecular Plant Pathology, 2012, 13(4): 414 − 430. doi:  10.1111/j.1364-3703.2011.00783.x
[2] SKAMNIOTI P, GURR S J. Against the grain: safeguarding rice from rice blast disease [J]. Trends in Biotechnology, 2009, 27(3): 141 − 150. doi:  10.1016/j.tibtech.2008.12.002
[3] TALBOT N J. On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea [J]. Annual Review of Microbiology, 2003, 57(1): 177 − 202. doi:  10.1146/annurev.micro.57.030502.090957
[4] TALBOT N J. Having a blast: exploring the pathogenicity of Magnaporthe grisea [J]. Trends in Microbiology, 1995, 3(1): 9 − 16. doi:  10.1016/S0966-842X(00)88862-9
[5] BAKER B, ZAMBRYSKI P, STASKAWICZ B. Signaling in plant-microbe interactions [J]. Science, 1997, 276(5313): 726 − 733. doi:  10.1126/science.276.5313.726
[6] 朱名海, 杨媚, 周而勋. 水稻3种重要病原真菌遗传多样性的研究进展[J]. 仲恺农业工程学院学报, 2015, 28(3): 1 − 6. doi:  10.3969/j.issn.1674-5663.2015.03.001
[7] COUCH B C, KOHN L M. A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea [J]. Mycologia, 2002, 94(4): 683 − 693. doi:  10.1080/15572536.2003.11833196
[8] 刘忱, 皮磊, 舒灿伟, 等. 低毒真菌病毒在植物病害生物防治中的研究及应用进展[J]. 分子植物育种, 2018, 16(2): 552 − 559.
[9] 刘忱, 张美玲, 舒灿伟, 等. 真菌病毒的研究进展[J]. 中国植保导刊, 2016, 36(9): 18 − 27. doi:  10.3969/j.issn.1672-6820.2016.09.004
[10] GHABRIAL S A, CASTÓN J R, JIANG D H, et al. 50-plus years of fungal viruses [J]. Virology, 2015, 479-480: 356 − 368. doi:  10.1016/j.virol.2015.02.034
[11] URAYAMA S, KATO S, SUZUKI Y, et al. Mycoviruses related to chrysovirus affect vegetative growth in the rice blast fungus Magnaporthe oryzae [J]. Journal of General Virology, 2010, 91(12): 3085 − 3094. doi:  10.1099/vir.0.025411-0
[12] URAYAMA S, SAKODA H, TAKAI R, et al. A dsRNA mycovirus, Magnaporthe oryzae chrysovirus 1-B, suppresses vegetative growth and development of the rice blast fungus [J]. Virology, 2014, 448: 265 − 273. doi:  10.1016/j.virol.2013.10.022
[13] TANG L H, HU Y P, LIU L J, et al. Genomic organization of a novel victorivirus from the rice blast fungus Magnaporthe oryzae [J]. Archives of Virology, 2015, 160(11): 2907 − 2910. doi:  10.1007/s00705-015-2562-4
[14] HIGASHIURA T, KATOH Y, Urayama S, et al. Magnaporthe oryzae chrysovirus 1 strain D confers growth inhibition to the host fungus and exhibits multiform viral structural proteins [J]. Virology, 2019, 535: 241 − 254. doi:  10.1016/j.virol.2019.07.014
[15] YOKOI T, YAMASHITA S, HIBI T. The nucleotide sequence and genome organization of Magnaporthe oryzae virus 1 [J]. Archives of Virology, 2007, 152(12): 2265 − 2269. doi:  10.1007/s00705-007-1045-7
[16] MAEJIMA K, HIMENO M, KOMATSU K, et al. Complete nucleotide sequence of a new double-stranded RNA virus from the rice blast fungus, Magnaporthe oryzae [J]. Archives of Virology, 2008, 153(2): 389 − 391. doi:  10.1007/s00705-007-1101-3
[17] Du Y N, He X, Zhou X, et al. Complete nucleotide sequence of Magnaporthe oryzae partitivirus 1 [J]. Archives of Virology, 2016, 161(11): 1 − 4.
[18] 陈伟博, 梁克力, 李阳艺, 等. 稻瘟菌双分病毒MoPV2特性研究[J]. 植物病理学报, 2017, 47(4): 448 − 457.
[19] LIN Y, ZHOU J, ZHOU X, et al. A novel narnavirus from the plant-pathogenic fungus Magnaporthe oryzae [J]. Archives of Virology, 2020, 165(7): 1235 − 1240.
[20] AI Y P, ZHONG J, CHEN C Y, et al. A novel single-stranded RNA virus isolated from the rice-pathogenic fungus Magnaporthe oryzae with similarity to members of the family Tombusviridae [J]. Archives of Virology, 2016, 161(3): 725 − 729. doi:  10.1007/s00705-015-2683-9
[21] OHKITA S, LEE Y, NGUYEN Q, et al. Three ourmia-like viruses and their associated RNAs in Pyricularia oryzae [J]. Virology, 2019, 534: 25 − 35. doi:  10.1016/j.virol.2019.05.015
[22] ILLANA A, MARCONI M, RODRÍGUEZ-ROMERo J, et al. Molecular characterization of a novel ssRNA ourmia-like virus from the rice blast fungus Magnaporthe oryzae [J]. Archives of Virology, 2017, 162(3): 891 − 895. doi:  10.1007/s00705-016-3144-9
[23] LI C X, ZHU J Z, GAO B D, et al. Characterization of a novel ourmia-like mycovirus infecting Magnaporthe oryzae and implications for viral diversity and evolution [J]. Viruses, 2019, 11(3): 223 − 235. doi:  10.3390/v11030223
[24] 陈伟博. 稻瘟病菌中病毒的初步研究[D]. 武汉: 华中农业大学, 2017.
[25] STRAUSS E E, LAKSHMAN D K, TAVANTZIS S M. Molecular characterization of the genome of a partitivirus from the basidiomycete Rhizoctonia solani [J]. The Journal of General Virology, 2000, 81(2): 549 − 555.
[26] URAYAMA S I, FUKUHARA T, MORIYAMA H, et al. Heterologous expression of a gene of Magnaporthe oryzae chrysovirus 1 strain A disrupts growth of the human pathogenic fungus Cryptococcus neoformans [J]. Microbiology and Immunology, 2014, 58(5): 294 − 302. doi:  10.1111/1348-0421.12148
[27] YAMASHITA S, DOI Y, YORA K. A polyhedral virus found in rice blast fungus, Pyricularia oryzae Cavara [J]. The Phytopathological Society of Japan, 1971, 37(5): 356 − 359. doi:  10.3186/jjphytopath.37.356
[28] HIMENO M, MAEJIMA K, KOMATSU K, et al. Significantly low level of small RNA accumulation derived from an encapsidated mycovirus with dsRNA genome [J]. Virology, 2010, 396(1): 69 − 75. doi:  10.1016/j.virol.2009.10.008
[29] OWASHI Y, AIHARA M, MORIYAMA H, et al. Population structure of double-stranded RNA mycoviruses that infect the rice blast fungus Magnaporthe oryzae in Japan [J]. Frontiers in Microbiology, 2020, 11: 593784. doi:  10.3389/fmicb.2020.593784
[30] 唐利华, 谢甲涛, 程家森, 等. 稻瘟菌群体中dsRNA的多样性及稻瘟菌菌株QSP5中病毒对寄主生物学性状影响的研究[J]. 植物病理学报, 2016, 46(2): 151 − 159.
[31] HONG Y, DOVER S L, COLE T E, et al. Multiple mitochondrial viruses in an isolate of the Dutch elm disease fungus Ophiostoma novo-ulmi [J]. Virology, 1999, 258(1): 118 − 127. doi:  10.1006/viro.1999.9691
[32] 柏斌, 吴俊, 周波, 等. 稻瘟病抗性分子育种研究综述[J]. 杂交水稻, 2012, 27(3): 5 − 9. doi:  10.3969/j.issn.1005-3956.2012.03.002
[33] 邱德文. 我国植物病害生物防治的现状及发展策略[J]. 植物保护, 2010, 36(4): 15 − 18. doi:  10.3969/j.issn.0529-1542.2010.04.004
[34] HUANG S H, GHABRIAL S A. Organization and expression of the double-stranded RNA genome of Helminthosporium victoriae 190S virus, a totivirus infecting a plant pathogenic filamentous fungus [J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(22): 12541 − 12546. doi:  10.1073/pnas.93.22.12541
[35] GRENTE J, BERTHELAY-SAURET S. Biological control of chestnut blight in France [J]. American Chestnut Proceedings, 1978: 30 − 34.
[36] NUSS D L. Hypovirulence: Mycoviruses at the fungal-plant interface [J]. Nature Reviews Microbiology, 2005, 3(8): 632 − 642. doi:  10.1038/nrmicro1206
[37] YU X, LI B, FU Y P, et al. A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(18): 8387 − 8392. doi:  10.1073/pnas.0913535107
[38] TIAN B N, XIE J T, FU Y P, et al. A cosmopolitan fungal pathogen of dicots adopts an endophytic lifestyle on cereal crops and protects them from major fungal diseases [J]. The ISME Journal, 2020, 14(12): 3120 − 3135. doi:  10.1038/s41396-020-00744-6
[39] YU X, LI B, FU Y P, et al. Extracellular transmission of a DNA mycovirus and its use as a natural fungicide [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(4): 1452 − 1457. doi:  10.1073/pnas.1213755110
[40] XIE J, JIANG D H. New insights into mycoviruses and exploration for the biological control of crop fungal diseases [J]. Annual Review of Phytopathology, 2014, 52(1): 45 − 68. doi:  10.1146/annurev-phyto-102313-050222
[41] WEBBER J. A natural biological control of Dutch elm disease [J]. Nature, 1981, 292(5822): 449 − 451. doi:  10.1038/292449a0
[42] ZHANG D X, NUSS D L. Engineering super mycovirus donor strains of chestnut blight fungus by systematic disruption of multilocus vic genes [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(8): 2062 − 2067. doi:  10.1073/pnas.1522219113
[43] AIHARA M, URAYAMA S I, Le M T, et al. Infection by Magnaporthe oryzae chrysovirus 1 strain A triggers reduced virulence and pathogenic race conversion of its host fungus, Magnaporthe oryzae [J]. Journal of General Plant Pathology, 2018, 84(2): 92 − 103. doi:  10.1007/s10327-018-0766-7
[44] FELDMAN T S, MORSY M R, ROOSSINCK M J. Are communities of microbial symbionts more diverse than communities of macrobial hosts? [J]. Fungal Biology, 2012, 116(4): 465 − 477. doi:  10.1016/j.funbio.2012.01.005
[45] HUTCHISON E, BROWN S, TIAN C G, et al. Transcriptional profiling and functional analysis of heterokaryon incompatibility in Neurospora crassa reveals that reactive oxygen species, but not metacaspases, are associated with programmed cell death [J]. Microbiology, 2009, 155(12): 3957 − 3970. doi:  10.1099/mic.0.032284-0
[46] CHOI G H, DAWE A L, CHURBANOV A, et al. Molecular characterization of vegetative incompatibility genes that restrict hypovirus transmission in the chestnut blight fungus Cryphonectria parasitica [J]. Genetics, 2012, 190(1): 113 − 127. doi:  10.1534/genetics.111.133983