[1] 钱双杰. 拟南芥生长素响应因子ARF17调控LTPG4对花粉管伸长影响[D]. 上海: 上海师范大学, 2024. doi:  10.27312/d.cnki.gshsu.2024.001030.
[2] 温绍廷. 生长素调控拟南芥不定根再生的分子机制研究[D]. 上海: 上海师范大学, 2021. doi:  10.27312/d.cnki.gshsu.2021.000501.
[3] WANG X Y, YU R B, WANG J J, et al. The asymmetric expression of SAUR genes mediated by ARF7/19 promotes the gravitropism and phototropism of plant hypocotyls[J]. Cell Reports, 2020, 31(3): 107529. doi:  10.1016/j.celrep.2020.107529
[4] ZHANG F, TAO W Q, SUN R Q, et al. Correction: PRH1 mediates ARF7-LBD dependent auxin signaling to regulate lateral root development in Arabidopsis thaliana[J]. PLoS Genetics, 2022, 18(3): e1010125. doi:  10.1371/journal.pgen.1010125
[5] 臧鹏跃. 番茄SlARF3对果实大小、可溶性糖以及有机酸影响的初步研究[D]. 沈阳: 沈阳农业大学, 2021. doi:  10.27327/d.cnki.gshnu.2021.000095.
[6] 徐富贵. OsARF18调控水稻根系发育和磷素吸收的机制研究[D]. 郑州: 河南农业大学, 2021. doi:  10.27117/d.cnki.ghenu.2021.000173.
[7] QIAO J Y, ZHANG Y J, HAN S Q L, et al. OsARF4 regulates leaf inclination via auxin and brassinosteroid pathways in rice[J]. Frontiers in Plant Science, 2022, 13: 979033. doi:  10.3389/fpls.2022.979033
[8] ZHAO Z X, YIN X X, LI S, et al. miR167d-ARFs module regulates flower opening and stigma size in rice[J]. Rice, 2022, 15(1): 40. doi:  10.1186/s12284-022-00587-z
[9] ZHANG X F, CAO J F, HUANG C C, et al. Characterization of cotton ARF factors and the role of GhARF2b in fiber development[J]. BMC Genomics, 2021, 22(1): 202. doi:  10.1186/s12864-021-07504-6
[10] ZHANG H H, LI L L, HE Y Q, et al. Distinct modes of manipulation of rice auxin response factor OsARF17 by different plant RNA viruses for infection[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(16): 9112 − 9121. doi:  10.1073/pnas.1918254117
[11] CARUANA J C, DHAR N, RAINA R. Overexpression of Arabidopsis microRNA167 induces salicylic acid-dependent defense against Pseudomonas syringae through the regulation of its targets ARF6 and ARF8[J]. Plant Direct, 2020, 4(9): e00270. doi:  10.1002/pld3.270
[12] LI J, WU F K, HE Y F, et al. Maize transcription factor ZmARF4 confers phosphorus tolerance by promoting root morphological development[J]. International Journal of Molecular Sciences, 2022, 23(4): 2361. doi:  10.3390/ijms23042361
[13] WANG C F, LI X M, ZHUANG Y B, et al. A novel miR160a-GmARF16-GmMYC2 module determines soybean salt tolerance and adaptation[J]. New Phytologist, 2024, 241(5): 2176 − 2192. doi:  10.1111/nph.19503
[14] 马俊杰, 郭凤丹, 王兴军, 等. 生长素合成、运输和信号转导调控植物胚胎早期发育[J]. 植物生理学报, 2019, 55(5): 547 − 557. doi:  10.13592/j.cnki.ppj.2018.0539
[15] 吴元彩, 王东登, 郑旭阳, 等. 激素和蔗糖对番茄子叶节位侧芽萌发与生长的影响[J]. 南方农业学报, 2024, 55(2): 509 − 519. doi:  10.3969/j.issn.2095-1191.2024.02.021
[16] 庞祥宇. 木薯IAA/ARF基因家族预测、表达及功能分析[D]. 南宁: 广西大学, 2019.
[17] LI Y H, HAN S Q L, QI Y. Advances in structure and function of auxin response factor in plants[J]. Journal of Integrative Plant Biology, 2023, 65(3): 617 − 632. doi:  10.1111/jipb.13392
[18] SWAMINATHAN K, PETERSON K, JACK T. The plant B3 superfamily[J]. Trends in Plant Science, 2008, 13(12): 647 − 655. doi:  10.1016/j.tplants.2008.09.006
[19] CANCÉ C, MARTIN-AREVALILLO R, BOUBEKEUR K, et al. Auxin response factors are keys to the many auxin doors[J]. New Phytologist, 2022, 235(2): 402 − 419. doi:  10.1111/nph.18159
[20] FONTANA M, ROOSJEN M, CRESPO GARCÍA I, et al. Cooperative action of separate interaction domains promotes high-affinity DNA binding of Arabidopsis thaliana ARF transcription factors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(11): e2219916120. doi:  10.1073/PNAS.2219916120
[21] WANG Y, LI Y, HE S P, et al. The transcription factor ERF108 interacts with AUXIN RESPONSE FACTORs to mediate cotton fiber secondary cell wall biosynthesis[J]. The Plant Cell, 2023, 35(11): 4133 − 4154. doi:  10.1093/plcell/koad214
[22] LIU K, LI Y H, CHEN X N, et al. ERF72 interacts with ARF6 and BZR1 to regulate hypocotyl elongation in Arabidopsis[J]. Journal of Experimental Botany, 2018, 69(16): 3933 − 3947. doi:  10.1093/jxb/ery220
[23] ZHANG T, LI W J, XIE R X, et al. CpARF2 and CpEIL1 interact to mediate auxin-ethylene interaction and regulate fruit ripening in papaya[J]. The Plant Journal, 2020, 103(4): 1318 − 1337. doi:  10.1111/tpj.14803
[24] 李秉贞. 生长素响应因子ARF4通过与IAA12互作调控拟南芥芽再生[D]. 泰安: 山东农业大学, 2020. doi:  10.27277/d.cnki.gsdnu.2020.000946.
[25] HSIEH W Y, LIN S C, HSIEH M H. Transformation of nad7 into the nuclear genome rescues the slow growth3 mutant in Arabidopsis[J]. RNA Biology, 2018, 15(11): 1385 − 1391. doi:  10.1080/15476286.2018.1546528
[26] XU Y N, SHEN J F, RUAN H Q, et al. A RhoGAP controls apical actin polymerization by inhibiting formin in Arabidopsis pollen tubes[J]. Current Biology, 2024, 34(21): 5040 − 5053. doi:  10.1016/j.cub.2024.09.053
[27] HU J, SU H L, CAO H, et al. AUXIN RESPONSE FACTOR7 integrates gibberellin and auxin signaling via interactions between DELLA and AUX/IAA proteins to regulate cambial activity in poplar[J]. The Plant Cell, 2022, 34(7): 2688 − 2707. doi:  10.1093/plcell/koac107
[28] HINA A, KHAN N, KONG K K, et al. Exploring the role of FBXL gene family in Soybean: implications for plant height and seed size regulation[J]. Physiologia Plantarum, 2024, 176(1): e14191. doi:  10.1111/ppl.14191
[29] PERALES L, PEÑARRUBIA L, CORNEJO M J. Induction of a polyubiquitin gene promoter by dehydration stresses in transformed rice cells[J]. Journal of Plant Physiology, 2008, 165(2): 159 − 171. doi:  10.1016/j.jplph.2006.12.012