[1] WILSON I W, SCHIFF C L, HUGHES D E, et al. Quantitative trait loci analysis of powdery mildew disease resistance in the Arabidopsis thaliana accession kashmir-1 [J]. Genetics, 2001, 158(3): 1301 − 1309.
[2] XIAO S, CALIS O, PATRICK E, et al. The atypical resistance gene, RPW8, recruits components of basal defence for powdery mildew resistance in Arabidopsis [J]. The Plant Journal: for cell and molecular biology, 2005, 42(1): 95 − 110. doi:  10.1111/j.1365-313X.2005.02356.x
[3] GOLLNER K, SCHWEIZER P, BAI Y, et al. Natural genetic resources of Arabidopsis thaliana reveal a high prevalence and unexpected phenotypic plasticity of RPW8-mediated powdery mildew resistance [J]. The New Phytologist, 2008, 177: 725 − 742. doi:  10.1111/j.1469-8137.2007.02339.x
[4] WANG Y, NISHIMURA M T, ZHAO T, et al. ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis [J]. The Plant Journal: for cell and molecular biology, 2011, 68: 74 − 87. doi:  10.1111/j.1365-313X.2011.04669.x
[5] SHARMA G, AMINEDI R, SAXENA D, et al. Effector mining from the Erysiphe pisi haustorial transcriptome identifies novel candidates involved in pea powdery mildew pathogenesis [J]. Molecular Plant Pathology, 2019, 20(11): 1506 − 1522. doi:  10.1111/mpp.12862
[6] SPANU P D, ABBOTT J C, AMSELEM J, et al. Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism [J]. Science, 2010, 330: 1543 − 1546. doi:  10.1126/science.1194573
[7] GODFREY D, BOHLENIUS H, PEDERSEN C, et al. Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif [J]. BMC genomics, 2010, 11: 317. doi:  10.1186/1471-2164-11-317
[8] LIANG P, LIU S, XU F, et al. Powdery mildews are characterized by contracted carbohydrate metabolism and diverse effectors to adapt to obligate biotrophic lifestyle [J]. Front Microbiol., 2018, 9: 3160. doi:  10.3389/fmicb.2018.03160
[9] WU Y, MA X, PAN Z, et al. Comparative genome analyses reveal sequence features reflecting distinct modes of host-adaptation between dicot and monocot powdery mildew [J]. BMC Genomics., 2018, 19(1): 705. doi:  10.1186/s12864-018-5069-z
[10] MARTÍNEZ-CRUZ J, ROMERO D, TORRE F N, et al. The functional characterization of Podosphaera xanthii candidate effector genes reveals novel target functions for fungal pathogenicity [J]. Mol. Plant-Microbe Interact., 2018, 32: 914 − 931.
[11] BEELEY, F. Oidium heveae: report on the 1933 outbreak of Hevea leaf mildew [J]. J. Rubber Res. Inst. Malaysia, 1933, 5: 5 − 13.
[12] MITRA M, MEHTA P R. Some leaf diseases of Hevea brasiliensis new to India [J]. Indian J. Agric. Sci., 1938, 8: 185 − 188.
[13] SARANYA L, SAWANEE K, EDSON L, et al. Molecular phylogenetic and morphological analyses of Oidium heveae, a powdery mildew of rubber tree [J]. J. Mol. Evol., 2005, 46: 220 − 226.
[14] MEI S, HOU G, CUI T, et al. Characterization of the interaction between Oidium heveae and Arabidopsis thaliana [J]. Mol Plant Pathol, 2016, 17(9): 1331 − 1343. doi:  10.1111/mpp.12363
[15] ZHANG J, SHAO F, LI Y, et al. A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants [J]. Cell Host Microbe, 2007, 1: 175 − 185. doi:  10.1016/j.chom.2007.03.006
[16] SATO K, KADOTA Y, SHIRASU, K. Plant immune responses to parasitic nematodes [J]. Front Plant Sci., 2019, 10: 1 − 14. doi:  10.3389/fpls.2019.00001
[17] THORDAL-CHRISTENSEN H, BIRCH P R J, SPANU P D, et al. Why did filamentous plant pathogens evolve the potential to secrete hundreds of effectors to enable disease? [J]. Mol Plant Pathol, 2018, 19: 781 − 785. doi:  10.1111/mpp.12649
[18] PENNINGTON H G, JONES R, KWON S, et al. The fungal ribonuclease-like effector protein CSEP0064/BEC1054 represses plant immunity and interferes with degradation of host ribosomal RNA [J]. PLoS Pathog, 2019, 15: e1007620. doi:  10.1371/journal.ppat.1007620
[19] NISHIMURA M T, STEIN M, HOU B H, et al. Loss of a callose synthase results in salicylic acid-dependent disease resistance [J]. Science, 2003, 301: 969 − 972. doi:  10.1126/science.1086716
[20] WU Y J, GAO Y, ZHAN Y Y, et al. Loss of the common immune coreceptor BAK1 leads to NLR-dependent cell death [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(43): 27044 − 27053. doi:  10.1073/pnas.1915339117