[1] HILL J L, HILL R A. Why are tropical rain forests so species rich? Classifying, reviewing and evaluating theories [J]. Progress in Physical Geography, 2001, 25(3): 326 − 354. doi:  10.1177/030913330102500302
[2] EISERHARDT W L, COUVREUR T L P, BAKER W J. Plant phylogeny as a window on the evolution of hyperdiversity in the tropical rainforest biome [J]. The New phytologist, 2017, 214(4): 1408 − 1422. doi:  10.1111/nph.14516
[3] BONAN G B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests [J]. Science, 2008, 320(5882): 1444 − 1449. doi:  10.1126/science.1155121
[4] 吴征镒. 中国植被[M]. 北京: 科学出版社, 1983.
[5] 兰国玉, 陈伟, 陶忠良, 等. 海南与西双版纳龙脑香热带雨林比较研究[J]. 西北植物学报, 2010, 30(4): 806 − 812.
[6] 许涵, 李艳朋, 李意德, 等. 中国热带森林植被类型研究历史和划分探讨[J]. 广西植物, 2021, 41(10): 1595 − 1604. doi:  10.11931/guihaia.gxzw202107001
[7] 胡玉佳. 海南岛龙脑香森林的群落特征及其类型[J]. 生态科学, 1983(2): 16 − 24.
[8] 黄瑾, 杨小波, 龙文兴, 等. 海南单优龙脑香科植物群落特征[J]. 热带作物学报, 2013, 34(3): 578 − 583.
[9] 邢福武, 李泽贤, 吴德邻. 海南岛南部甘什岭植物区系的初步研究[J]. 植物研究, 1993, 13(3): 227 − 242.
[10] 漆良华, 梁昌强, 毛超, 等. 海南岛甘什岭热带低地次生雨林物种组成与地理成分[J]. 生态学杂志, 2014, 33(4): 922 − 929.
[11] 杨小波, 林英, 梁淑群, 等. 海南岛无翼坡垒种群结构与分布格局研究[J]. 海南大学学报(自然科学版), 1995, 13(4): 299 − 303.
[12] 杨小波, 林英, 王琼梅, 等. 海南岛无翼坡垒种群调节研究[J]. 海南大学学报(自然科学版), 1996, 14(3): 236 − 240.
[13] 杨小波, 黄世满, 梁淑群, 等. 海南岛无翼坡垒林植物物种多样性和物种空间配置研究[J]. 海南大学学报(自然科学版), 1996, 14(2): 140 − 145.
[14] 胡璇, 徐瑞晶, 舒琪, 等. 海南岛甘什岭特有植物无翼坡垒种群结构与动态[J]. 热带作物学报, 2020, 41(9): 1939 − 1945. doi:  10.3969/j.issn.1000-2561.2020.09.030
[15] 伍月花, 许创, 谢国干. 海南岛无翼坡垒病害研究[J]. 热带林业, 1998, 26(2): 65 − 68.
[16] 胡荣桂, 梁淑群, 林英, 等. 海南岛无翼坡垒营养状况研究[J]. 热带林业, 1997, 25(1): 6 − 9.
[17] 洪文君, 何书奋, 曾德华, 等. 无翼坡垒植物与土壤营养元素及化学计量学特征[J]. 中南林业科技大学学报, 2019, 39(11): 98 − 103.
[18] 何书奋, 王祥微, 王敏, 等. 不同苗龄无翼坡垒生长和光合生理特性差异性研究[J]. 热带林业, 2018, 46(4): 8 − 10. doi:  10.3969/j.issn.1672-0938.2018.04.002
[19] 胡彪, 佘济云, 唐亦武, 等. 基于MaxEnt的无翼坡垒在三亚潜在适生区的研究[J]. 中南林业科技大学学报, 2020, 40(6): 63 − 71.
[20] MKARE T K, VAN VUUREN B J, TESKE P R. Conservation implications of significant population differentiation in an endangered estuarine seahorse [J]. Biodiversity and Conservation, 2017, 26(6): 1275 − 1293. doi:  10.1007/s10531-017-1300-5
[21] PETROVA G, PETROV S, BANCHEVA S. Genetic diversity of the critically endangered Verbascum davidoffii Murb. (Scrophulariaceae) and implications for conservation [J]. Biologica Nyssana, 2016, 7(2): 101 − 106.
[22] WANG X, CHEN W, LUO J, et al. Development of EST-SSR markers and their application in an analysis of the genetic diversity of the endangered species Magnolia sinostellata [J]. Mol Genet Genomics, 2019, 294(1): 135 − 147. doi:  10.1007/s00438-018-1493-7
[23] DING S, WANG S, HE K, et al. Large-scale analysis reveals that the genome features of simple sequence repeats are generally conserved at the family level in insects [J]. BMC Genomics, 2017, 18(1): 848. doi:  10.1186/s12864-017-4234-0
[24] 杨梦婷, 黄洲, 干建平, 等. SSR分子标记的研究进展[J]. 杭州师范大学学报(自然科学版), 2019, 18(4): 429 − 436.
[25] 王绍先, 王飞, 刘成柏, 等. DNA分子标记技术在濒危物种保护中的应用[J]. 生态学杂志, 2008(2): 250 − 256.
[26] 李媛媛, 刘超男, 王嵘, 等. 分子标记在濒危物种保护中的应用[J]. 生物多样性, 2020, 28(3): 367 − 375. doi:  10.17520/biods.2019414
[27] LEE S L, N G, K K, et al. Linking the gaps between conservation research and conservation management of rare dipterocarps: A case study of Shorea lumutensis [J]. Biological Conservation, 2006, 131(1): 72 − 92. doi:  10.1016/j.biocon.2006.02.005
[28] TRANG N T, TRIEST L. Genetic structure of the threatened Hopea chinensis in the Quang Ninh Province[J], Vietnam. Genet Mol Res. 2016;15(2): gmr15028103.
[29] WANG C, MA X, REN M, et al. Genetic diversity and population structure in the endangered tree Hopea hainanensis (Dipterocarpaceae) on Hainan Island, China [J]. PloS one, 2020, 15(11): e0241452. doi:  10.1371/journal.pone.0241452
[30] MURRAY M G, THOMPSON W F. Rapid isolation of high molecular weight plant DNA [J]. Nucleic acids research, 1980, 8(19): 4321 − 4325. doi:  10.1093/nar/8.19.4321
[31] WANG C, MA X, TANG L. Isolation and characterization of twelve polymorphic microsatellite markers in the endangered Hopea hainanensis (Dipterocarpaceae) [J]. Ecology and Evolution, 2020, 11(1): 4 − 10. doi:  10.1111/2041-210X.13344
[32] ESSELINK G D, NYBOM H, VOSMAN B. Assignment of allelic configuration in polyploids using the MAC-PR (microsatellite DNA allele counting-peak ratios) method [J]. Theor Appl Genet, 2004, 109(2): 402 − 408. doi:  10.1007/s00122-004-1645-5
[33] HUANG K, WANG T C, DUNN D W, et al. Genotypic frequencies at equilibrium for polysomic inheritance under double-reduction [J]. G3-Genes Genomes Genet., 2019, 9(5): 1693 − 1706.
[34] MEIRMANS P G. genodive version 3.0: Easy-to-use software for the analysis of genetic data of diploids and polyploids [J]. Molecular ecology resources, 2020, 20(4): 1126 − 1131. doi:  10.1111/1755-0998.13145
[35] HUANG K, DUNN D W, RITLAND K, et al. Polygene: population genetics analyses for autopolyploids based on allelic phenotypes [J]. Methods in Ecology and Evolution, 2020, 11(3): 448 − 56. doi:  10.1111/2041-210X.13338
[36] PRITCHARD J K, STRPHENS M, DONNELLY P. Inference of population structure using multilocus genotype data [J]. Genetics., 2000, 155(2): 945 − 59. doi:  10.1093/genetics/155.2.945
[37] EARL D A, VONHOLDT B M. Strcture harveste: a website and program for visualizing Structure output and implementing the Evanno method [J]. Conservation Genetics Resources, 2012, 4(2): 359 − 361. doi:  10.1007/s12686-011-9548-7
[38] JAKOBSSON M, ROSENBERG N A. Clumpp: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure [J]. Bioinformatics, 2007, 23(14): 1801 − 1806. doi:  10.1093/bioinformatics/btm233
[39] ROSENBERG N A. Distrct: a program for the graphical display of population structure [J]. Molecular Ecology Notes, 2004, 4(1): 137 − 8.
[40] CAVALLI-SFORZA L L, EDWARDS A W F. Phylogenetic analysis: models and estimation procedures [J]. Evolution, 1967, 21(3): 550 − 570. doi:  10.1111/j.1558-5646.1967.tb03411.x
[41] TAMURA K, PETERSON D, PETERSON N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods [J]. Mol Biol Evol, 2011, 28(10): 2731 − 2739. doi:  10.1093/molbev/msr121
[42] MEIRMANS P G, LIU S L, VAN TIENDEREN P H. The analysis of polyploid genetic data [J]. The Journal of Heredity, 2018, 109(3): 109.
[43] LUIKART G, ALLENDORF F W, CORNUET J M, et al. Distortion of allele frequency distributions provides a test for recent population bottlenecks [J]. The Journal of Heredity, 1998, 89(3): 238 − 47. doi:  10.1093/jhered/89.3.238
[44] HUGHES A R, INOUYE B D, JOHNSON M T, et al. Ecological consequences of genetic diversity [J]. Ecology Letters, 2008, 11(6): 609 − 623. doi:  10.1111/j.1461-0248.2008.01179.x
[45] HALOIN J R, STRAUSS S Y. Interplay between ecological communities and evolution: review of feedbacks from microevolutionary to macroevolutionary scales [J]. Annals of the New York Academy of Sciences, 2008, 1133(1): 87 − 125. doi:  10.1196/annals.1438.003
[46] VANDEWOESTIJNE S, SCHTICKZELLE N, Baguette M. Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation [J]. BMC Biology, 2008, 6(1): 46. doi:  10.1186/1741-7007-6-46
[47] HAMRICK J L, GODT M J W, Sherman-Broyles S L. Factors influencing levels of genetic diversity in woody plant species [J]. New Forests, 1992, 6(1/2/3/4): 95 − 124.
[48] TRANG N T P, TRIEST L. The genetic structure of three threatened Hopea species (Dipterocarpaceae) in the protected areas of Vietnam [J]. International Journal of Applied and Natural Sciences, 2019, 8(3): 191 − 204.
[49] TAKEUCHI Y, ICHIKAWA S, KONUMA A, et al. Comparison of the fine-scale genetic structure of three dipterocarp species [J]. Heredity, 2004, 92(4): 323 − 328. doi:  10.1038/sj.hdy.6800411
[50] ALLENDORF F W, HOHENLOHE P A, LUIKART G. Genomics and the future of conservation genetics [J]. Nat Rev Genet, 2010, 11(10): 697 − 709. doi:  10.1038/nrg2844