[1] |
王丞, 冉伟, 杨朝辉, 等. 梵净山保护区主要雉类的繁殖期栖息地选择与空间分布[J]. 林业科学, 2020, 56(11): 134 − 142. doi: 10.11707/j.1001-7488.20201114 |
[2] |
SULLIVAN B L, WOOD C L, ILIFF M J, et al. eBird: A citizen-based bird observation network in the biological sciences [J]. Biological Conservation, 2009, 142(10): 2282 − 2292. doi: 10.1016/j.biocon.2009.05.006 |
[3] |
肖治术, 王学志, 黄小群. 青城山森林公园兽类和鸟类资源初步调查: 基于红外相机数据[J]. 生物多样性, 2014, 22(6): 788 − 793. |
[4] |
WELINDER P, BRANSON S, MITA T, et al. Caltech-UCSD Birds 200[J]. California Institute of Technology. 2010:CNS-TR-2010-001. . |
[5] |
BERG T. BELHUMEUR P N. Poof: Part-based one-vs. -one features for fine-grained categorization, face verification, and attribute estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013: 955-962. |
[6] |
YAO B, BRADSKI G, Fei-Fei L. A codebook-free and annotation-free approach for fine-grained image categorization[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2012:3466-3473. |
[7] |
YANG S, BO L, WANG J, et al. Unsupervised template learning for fine-grained object recognition [J]. Advances in neural information processing systems, 2012,: 3122-3130. |
[8] |
周智恒, 牛畅, 尚俊媛, 等. 一种基于结构保持零样本学习的鸟类濒危物种识别方法: CN110717512A[P]. 2023-04-07. |
[9] |
李鹏博, 王向文. 基于深度特征融合生成的密集人群计数网络[J]. 计算机应用与软件, 2021, 38(3): 153 − 158. doi: 10.3969/j.issn.1000-386x.2021.03.023 |
[10] |
李婧, 吴俊峰, 于红. 一种基于冗余裁剪的鱼群密度估计算法[J]. 计算机与数字工程, 2020, 48(12): 2864 − 2868. doi: 10.3969/j.issn.1672-9722.2020.12.012 |
[11] |
WANG Z, WANG J, LIN C, et al. Identifying habitat elements from bird images using deep convolutional neural networks [J]. Animals, 2021, 11(5): 1263. doi: 10.3390/ani11051263 |
[12] |
王鹏, 唐尚波, 陆舟, 等. 广西山心沙岛的春季水鸟群落[J]. 野生动物学报, 2019, 40(4): 957 − 963. doi: 10.3969/j.issn.1000-0127.2019.04.019 |
[13] |
李亚召, 云利军, 叶志霞, 等. 基于卷积神经网络的霉变烟叶图像识别方法研究[J]. 计算机工程与科学, 2021, 43(3): 473 − 479. doi: 10.3969/j.issn.1007-130X.2021.03.012 |
[14] |
刘仲博. 基于卷积神经网络的电选粉煤灰颗粒图像识别与烧失量预测模型[J]. 中国矿业, 2021, 30(5): 125 − 129. doi: 10.12075/j.issn.1004-4051.2021.05.030 |
[15] |
陈恒晟, 王军, 毛毅, 等. 基于协同特征的显著性目标检测算法[J]. 通信技术, 2021, 54(8): 1883 − 1890. doi: 10.3969/j.issn.1002-0802.2021.08.012 |
[16] |
郑秋梅, 谭丹, 王风华. 基于改进ResNet网络的交通标志识别研究[J]. 计算机与数字工程, 2021, 49(5): 947 − 951. doi: 10.3969/j.issn.1672-9722.2021.05.016 |
[17] |
JANGRA M, DHULL S K , SINGH K K, et al. ECG arrhythmia classification using modified visual geometry group network (mVGGNet)[J]. Journal of Intelligent & Fuzzy Systems. 2020,38(3) : 3151–3165. |
[18] |
WAGLE S A, HARIKRISHNAN R. Comparison of Plant Leaf Classification Using Modified AlexNet and Support Vector Machine [J]. Traitement du Signal, 2021, 38(1): 79 − 87. doi: 10.18280/ts.380108 |
[19] |
BOBKOWSKA K, BODUS-OLKOWSKA I. Potential and Use of the Googlenet Ann for the Purposes of Inland Water Ships Classification [J]. Polish Maritime Research, 2020, 27(4): 170 − 178. doi: 10.2478/pomr-2020-0077 |
[20] |
柳天滋, 陈昕, 李想, 等. 基于深度残差神经网络迁移学习的牙形刺图像识别[J]. 古生物学报, 2020, 59(4): 512 − 523. doi: 10.19800/j.cnki.aps.2020.042 |
[21] |
史春妹, 谢佳君, 顾佳音, 等. 基于目标检测的东北虎个体自动识别[J/OL]. 生态学报, 2021(12): 1-9. |
[22] |
石鑫鑫, 鱼昕, 刘铭. FCNN深度学习模型及其在动物语音识别中的应用[J]. 吉林大学学报(信息科学版), 2021, 39(1): 60 − 65. doi: 10.19292/j.cnki.jdxxp.2021.01.009 |
[23] |
刘文定, 李安琪, 张军国, 等. 基于ROI-CNN的赛罕乌拉国家级自然保护区陆生野生动物自动识别[J]. 北京林业大学学报, 2018, 40(8): 123 − 131. doi: 10.13332/j.1000-1522.20180141 |
[24] |
陈斌, 朱晋宁, 东一舟. 基于残差整流增强卷积神经网络的表情识别[J]. 液晶与显示, 2020, 35(12): 1299 − 1308. doi: 10.37188/YJYXS20203512.1299 |
[25] |
曲方圆, 李淑芸, 赵林林, 等. 黄海生态区保护空缺分析[J]. 生物多样性, 2021, 29(3): 385 − 393. doi: 10.17520/biods.2020443 |
[26] |
彭鹤博, 蔡志扬, 章麟, 等. 勺嘴鹬在中国的分布状况和面临的主要威胁[J]. 动物学杂志, 2017, 52(1): 158 − 166. doi: 10.13859/j.cjz.201701021 |
[27] |
马天, 张国钢, Syroechkovski E E, 等. 俄罗斯远东地区勺嘴鹬繁殖地夏季水鸟调查[J]. 动物学杂志, 2018, 53(4): 507 − 518. |
[28] |
AUNG P P, MOSES S, CLARK N A, et al. Recent changes in the number of spoon-billed sandpipers Calidris pygmaea wintering on the Upper Gulf of Mottama in Myanmar [J]. Oryx, 2018, 54(1): 23 − 7. |
[29] |
CLARK N A. , ANDERSON G Q A, LI J, et al. First formal estimate of the world population of the Critically Endangered spoon-billed sandpiper Calidris pygmaea [J]. Oryx, 2018, 52(1): 137 − 146. |
[30] |
冯尔辉, 陈伟, 廖宝文, 等. 海南东寨港红树林湿地鸟类监测与研究[J]. 热带生物学报, 2012, 3(1): 73 − 77. doi: 10.15886/j.cnki.rdswxb.2012.01.003 |
[31] |
褚梦凡, 肖晓彤, 丁杨, 等. 海南儋州湾红树林区沉积有机质来源及碳储量[J]. 海洋科学, 2021, 45(2): 22 − 31. |
[32] |
马维, 王瑁, 王文卿, 等. 海南岛西海岸红树林软体动物多样性[J]. 生物多样性, 2018, 26(7): 707 − 716. |
[33] |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-cam: Visual explanations from deep networks via gradient-based localization[C]//2017 IEEE International Conference on Computer Vision (ICCV). October 22-29, 2017, Venice, Italy. 2017: 618-626. |
[34] |
龚安, 姚鑫杰, 杜波, 等. 基于集成学习与生成对抗网络的皮肤镜图像分类方法[J]. 科学技术与工程, 2021, 21(3): 1071 − 1076. |
[35] |
王国伟, 刘嘉欣. 基于卷积神经网络的玉米病害识别方法研究[J]. 中国农机化学报, 2021, 42(2): 139 − 145. doi: 10.13733/j.jcam.issn.2095-5553.2021.02.021 |
[36] |
孙海蓉, 潘子杰, 晏勇. 基于深度卷积自编码网络的小样本光伏热斑识别与定位[J]. 华北电力大学学报(自然科学版), 2021, 48(4): 91 − 98. |
[37] |
何海明, 齐冬莲, 张国月, 等. 快速高效去除图像椒盐噪声的均值滤波算法[J]. 激光与红外, 2014, 44(4): 469 − 472. doi: 10.3969/j.issn.1001-5078.2014.04.25 |
[38] |
魏书伟, 曾上游, 周悦, 等. 基于并行残差卷积神经网络的多种树叶分类[J]. 现代电子技术, 2020, 43(9): 96 − 100. doi: 10.16652/j.issn.1004-373x.2020.09.023 |
[39] |
潘兵, 曾上游, 杨远飞, 等. 基于双网络级联卷积神经网络的设计[J]. 电光与控制, 2019, 26(2): 57 − 61. doi: 10.3969/j.issn.1671-637X.2019.02.012 |
[40] |
张怡, 赵珠蒙, 王校常, 等. 基于ResNet卷积神经网络的绿茶种类识别模型构建[J]. 茶叶科学, 2021, 41(2): 261 − 271. doi: 10.3969/j.issn.1000-369X.2021.02.011 |
[41] |
陆雅诺, 陈炳才. 基于注意力机制的小样本啤酒花病虫害识别[J]. 中国农机化学报, 2021, 42(3): 189 − 196. |
[42] |
NASIRAHMADI A, STURM B, EEWARDS S, et al. Deep learning and machine vision approaches for posture detection of individual pigs [J]. Sensors, 2019, 19(17): 3738. doi: 10.3390/s19173738 |
[43] |
ELPELTAGY M, SALLAM H. Automatic prediction of COVID− 19 from chest images using modified ResNet50 [J]. Multimedia tools and applications, 2021, 80(17): 26451 − 26463. doi: 10.1007/s11042-021-10783-6 |
[44] |
李恒, 张黎明, 蒋美容, 等. 一种基于ResNet152的红外与可见光图像融合算法[J]. 激光与光电子学进展, 2020, 57(8): 128 − 134. |
[45] |
RAUBER J, ZIMMERMANN R, BETHGE M, et al. Foolbox native: Fast adversarial attacks to benchmark the robustness of machine learning models in pytorch, tensorflow, and jax [J]. Journal of Open Source Software, 2020, 5(53): 2607. doi: 10.21105/joss.02607 |
[46] |
KOIRO E, GIMPLE G, LAMMICH S, et al. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the α-secretase ADAM 10 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(10): 5815 − 5820. doi: 10.1073/pnas.081612998 |
[47] |
HUANG H, XU H, WANG X, et al. Maximum F1-score discriminative training criterion for automatic mispronunciation detection [J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015, 23(4): 787 − 797. doi: 10.1109/TASLP.2015.2409733 |
[48] |
劳凤丹, 滕光辉, 李军, 等. 机器视觉识别单只蛋鸡行为的方法[J]. 农业工程学报, 2012, 28(24): 157 − 163. |
[49] |
李文博. 基于深度神经网络算法的眼底图像语义分割研究[D]. 上海:上海应用技术大学, 2021. DOI: 10.27801/d.cnki.gshyy.2021.000212. |
[50] |
WILLIAMS H J, HOLTON M D, SHEPARD E L C, et al. Identification of animal movement patterns using tri-axial magnetometry [J]. Movement ecology, 2017, 5(1): 1 − 14. doi: 10.1186/s40462-016-0093-6 |