[1] LAWLOR D W. Carbon and nitrogen assimilation in relation to yield: Mechanisms are the key to understanding production systems [J]. Journal of Experimental Botany, 2002, 53(370): 773 − 787. doi:  10.1093/jexbot/53.370.773
[2] RAVEN J A, HANDLEY L L, ANDREWS M. Global aspects of C/N interactions determining plant-environment interactions [J]. Journal of Experimental Botany, 2004, 55(394): 11 − 25.
[3] AMTMANN A, ARMENGAUD P. Effects of N, P, K and S on metabolism: new knowledge gained from multi-level analysis [J]. Current Opinion in Plant Biology, 2009, 12(3): 275 − 283. doi:  10.1016/j.pbi.2009.04.014
[4] JIANG C Q, ZU C L, WANG H Y. Effect of nitrogen fertilization on growth and photosynthetic nitrogen use efficiency in tobacco (Nicotiana tabacum L.) [J]. Journal of Life Sciences, 2015, 9: 373 − 380.
[5] 邢倩, 谷艳芳, 高志英, 等. 氮、磷、钾营养对冬小麦光合作用及水分利用的影响[J]. 生态学杂志, 2008, 27(3): 355 − 360.
[6] BOUSSADIA O, STEPPE K, ZGALLAI H, et al. Effects of nitrogen defi ciency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘Meski’ and ‘Koroneiki’ [J]. Scientia Horticulturae, 2010, 123: 336 − 342.
[7] LU C M, ZHANG J H. Photosynthetic CO2 assimilation, chlorophyll fluorescence and photoinhibition as affected by nitrogen deficiency in maize plants [J]. Plant Science, 2000, 151(2): 135 − 143. doi:  10.1016/S0168-9452(99)00207-1
[8] 李鹏程, 董合林, 刘爱忠, 等. 施氮量对棉花功能叶片生理特性、氮素利用效率及产量的影响[J]. 植物营养与肥料学报, 2015, 21(1): 81 − 91. doi:  10.11674/zwyf.2015.0109
[9] ADUGNA D B, ZEWDNEH Z, FIKRE L O, et al. Analysis of coffee (Coffea arabica L.) performance in relation to radiation level and rate of nitrogen supply II. Uptake and distribution of nitrogen, leaf photosynthesis and first bean yields [J]. European Journal of Agronomy, 2018, 92: 107 − 114.
[10] CRUZ J L, MOSQUIM P R, PELACANI C R, et al. Photosynthesis impairment in cassava leaves in response to nitrogen deficiency [J]. Plant and Soil, 2003, 257(2): 417 − 423. doi:  10.1023/A:1027353305250
[11] 陈建明, 俞晓平, 程家安. 叶绿素荧光动力学及其在植物抗逆生理研究中的应用[J]. 浙江农业学报, 2006, 18(1): 51 − 55. doi:  10.3969/j.issn.1004-1524.2006.01.012
[12] FLOR M H. Morphology and anatomy of palm seedlings [J]. The Botanical Review, 2006, 72(4): 273 − 329. doi:  10.1663/0006-8101(2006)72[273:MAAOPS]2.0.CO;2
[13] 王丹, 庞玉新, 胡璇, 等. 海南省槟榔种植业发展现状及其动力分析[J]. 广东农业科学, 2009, 40(15): 207 − 209.
[14] 孙慧洁, 龚敏. 海南槟榔种植、加工产业发展现状及对策研究[J]. 热带农业科学, 2019, 39(2): 91 − 94.
[15] MARTIN R E, ASNER G P, SACK L. Genetic variation in leaf pigment, optical and photosynthetic function among diverse phenotypes of Metrosideros polymorpha grown in a common garden [J]. Oecologia, 2007, 151(3): 387 − 400. doi:  10.1007/s00442-006-0604-z
[16] 刘迁杰, 程云霞, 贾凯, 等. 施氮量对复合沙培番茄氮代谢酶活性及品质和产量的影响[J/OL]. 中国农业科技导报, 1 − 9[2020−08−09]. https://doi.org/10.13304/j.nykjdb.2019.1016.
[17] 寸竹, 张金燕, 陈军文. 氮添加对二年生三七生长、光合特性及皂苷含量的影响[J]. 生态学杂志, 2020, 39(4): 1101 − 1111.
[18] 何亮珍, 蒋元利. 缺氮对叶用甘薯生长及生理的影响[J]. 湖南农业科学, 2017(3): 20 − 22.
[19] 王平荣, 张帆涛, 高家旭, 等. 高等植物叶绿素生物合成的研究进展[J]. 西北植物学报, 2009, 29(3): 0629 − 0636.
[20] HIKOSAKA K. Interspecific difference in the photosynthesis–nitrogen relationship: patterns, physiological causes, and ecological importance [J]. Journal of Plant Research, 2004, 117: 481 − 494.
[21] MU X H, CHEN Q W, CHEN F J, et al. Within-Leaf nitrogen allocation in adaptation to low nitrogen supply in Maize during Grain-Filling Stage [J]. Frontiers in Plant Science, 2016(7): 699 − 699.
[22] JIANG C D, GAO H Y, ZOU Q, et al. Leaf orientation, photorespiration and xanthophyll cycle protect young soybean leaves against high irradiance in field [J]. Environmental and Experimental Botany, 2006, 55(1/2): 87 − 96. doi:  10.1016/j.envexpbot.2004.10.003
[23] FRANK V B, EVA V, JAMES F D, et al. The role of active oxygen species in plant signal transduction [J]. Plant Science, 2001, 161: 405 − 414. doi:  10.1016/S0168-9452(01)00452-6
[24] 张辉, 王荷, 张蓓蓓, 等. 光强对黑麦草萌发生长、叶片叶绿素含量及光系统 II 的影响[J]. 干旱地区农业研究, 2018, 36(4): 207 − 213. doi:  10.7606/j.issn.1000-7601.2018.04.30
[25] 程亚娇, 谌俊旭, 王仲林, 等. 光强和光质对大豆幼苗形态及光合特性的影响[J]. 中国农业科学, 2018, 51(14): 2655 − 2663. doi:  10.3864/j.issn.0578-1752.2018.14.003
[26] 吴言, 唐宁, 张边江. 缺氮对不同粳稻品种光合特性的影响[J]. 湖北农业科学, 2014, 53(8): 1762 − 1764. doi:  10.3969/j.issn.0439-8114.2014.08.009
[27] 汤继华, 谢惠玲, 黄绍敏, 等. 缺氮条件下玉米自交系叶绿素含量与光合效率的变化[J]. 华北农学报, 2005, 20(5): 10 − 12. doi:  10.3321/j.issn:1000-7091.2005.05.002
[28] 唐辉. 氮素营养对香榧苗期光合特性和氮代谢的影响[D]. 杭州: 浙江农林大学, 2014.
[29] 郭卫东, 桑丹, 郑建树, 等. 缺氮对佛手气体交换、叶绿素荧光及叶绿体超微结构的影响[J]. 浙江大学学报, 2009, 35(3): 307 − 314.
[30] 武永军. 缺氮复氮处理下玉米幼苗根系的表观遗传机制研究[D]. 杨陵: 西北农林科技大学, 2012.
[31] COOMES D A, GRUBB P J. Responses of juvenile trees to above and belowground competition in nutrient-starved Amazonian rain forest [J]. Ecology, 1998, 79(3): 768 − 782. doi:  10.1890/0012-9658(1998)079[0768:ROJTTA]2.0.CO;2
[32] BIJLSTMA R J, LAMBERS H. A dynamic whole-plant model of integrated metabolism of nitrogen and carbon. 2. Balanced growth driven by C fluxes and regulated by signals from C and N substrate [J]. Plant and Soil, 2000, 220: 49 − 69.
[33] 吴月嫦, 谢深喜. P、K、Ca 缺失对枇杷幼苗生长发育及生理特性的影响[J]. 果树学报, 2006, 23(1): 55 − 58.
[34] 贾晓红, 周再知, 梁坤南, 等. 缺素对土沉香幼苗生长和叶片解剖结构的影响[J]. 福建农林大学学报, 2015, 44(1): 40 − 45.
[35] 马慧丽, 吕德国. 光照条件对‘寒富’苹果叶片结构和光合特性的影响[J]. 应用生态学报, 2014, 25(7): 1927 − 1932.