[1] NNOLIM N E, UDENIGWE C C, OKOH A I, et al. Microbial keratinase: Next generation green catalyst and prospective applications [J]. Frontiers in Microbiology, 2020, 11: 580164. doi:  10.3389/fmicb.2020.580164
[2] WANG B, YANG W, MCKITTRICK J, et al. Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration [J]. Progress in Materials Science, 2016, 76: 229 − 318. doi:  10.1016/j.pmatsci.2015.06.001
[3] 彭俏丽, 张辉华. 羽毛角蛋白降解的研究进展[J]. 广东饲料, 2020, 29(10): 43 − 46.
[4] BEN HAMAD BOUHAMED S, KECHAOU N. Kinetic study of sulphuric acid hydrolysis of protein feathers [J]. Bioprocess and Biosystems Engineering, 2017, 40(5): 715 − 721. doi:  10.1007/s00449-017-1737-7
[5] HASSAN M A, ABOL-FOTOUH D, OMER A M, et al. Comprehensive insights into microbial keratinases and their implication in various biotechnological and industrial sectors: A review [J]. International Journal of Biological Macromolecules, 2020, 154: 567 − 583. doi:  10.1016/j.ijbiomac.2020.03.116
[6] 张红岩, 何瑾, 杨梦莹, 等. 海洋来源羽毛降解菌株的筛选、鉴定及酶学性质研究[J]. 应用海洋学学报, 2022, 41(2): 338 − 346.
[7] QIU J, WILKENS C, BARRETT K, et al. Microbial enzymes catalyzing keratin degradation: Classification, structure, function [J]. Biotechnology Advances, 2020, 44: 107607. doi:  10.1016/j.biotechadv.2020.107607
[8] 柯野, 朱艳媚, 余国兴, 等. 羽毛降解菌株Streptomyces sp. DJ产生的蛋白酶酶学性质[J]. 中山大学学报, 2017, 56(6): 147 − 152.
[9] HUANG Y, BUSK P K, HERBST F A, et al. Genome and secretome analyses provide insights into keratin decomposition by novel proteases from the non-pathogenic fungus Onygena corvina [J]. Applied Microbiology and Biotechnology, 2015, 99(22): 9635 − 9649. doi:  10.1007/s00253-015-6805-9
[10] KANG E, JIN H S, LA J W, et al. Identification of keratinases from Fervidobacterium islandicum AW-1 using dynamic gene expression profiling [J]. Microbial Biotechnology, 2020, 13(2): 442 − 457. doi:  10.1111/1751-7915.13493
[11] VIDMAR B, VODOVNIK M. Microbial keratinases: Enzymes with promising biotechnological applications [J]. Food Technology and Biotechnology, 2018, 56(3): 312 − 328.
[12] SMITH T A, STEINERT P M, PARRY D A. Modeling effects of mutations in coiled-coil structures: Case study using epidermolysis bullosa simplex mutations in segment 1a of K5/K14 intermediate filaments [J]. Proteins, 2004, 55(4): 1043 − 1052. doi:  10.1002/prot.20089
[13] BRAGULLA H H, HOMBERGER D G. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia [J]. Journal of Anatomy, 2009, 214(4): 516 − 559. doi:  10.1111/j.1469-7580.2009.01066.x
[14] STEINERT P M, STEVEN A C, ROOP D R. The molecular biology of intermediate filaments [J]. Cell, 1985, 42(2): 411 − 420. doi:  10.1016/0092-8674(85)90098-4
[15] MARSHALL R C, ORWIN D F, GILLESPIE J M. Structure and biochemistry of mammalian hard keratin [J]. Electron Microscopy Reviews, 1991, 4(1): 47 − 83. doi:  10.1016/0892-0354(91)90016-6
[16] GONG H, ZHOU H, MCKENZIE G W, et al. An updated nomenclature for keratin-associated proteins (KAPs) [J]. International Journal of Biological Sciences, 2012, 8(2): 258 − 264. doi:  10.7150/ijbs.3278
[17] FRASER R D, PARRY D A. Molecular packing in the feather keratin filament [J]. Journal of Structural Biology, 2008, 162(1): 1 − 13. doi:  10.1016/j.jsb.2008.01.011
[18] CALVARESI M, ECKHART L, ALIBARDI L. The molecular organization of the beta-sheet region in Corneous beta-proteins (beta-keratins) of sauropsids explains its stability and polymerization into filaments [J]. Journal of Structural Biology, 2016, 194(3): 282 − 291. doi:  10.1016/j.jsb.2016.03.004
[19] 陈吉英. 羽毛粉的五种加工方法[J]. 农家顾问, 2015, 1(19): 56.
[20] 王晶. 一株新的羽毛角蛋白降解菌的鉴定、研究与应用 [D]; 东华大学, 2007.
[21] 贾如琰, 何玉凤, 王荣民, 等. 角蛋白的分子构成、提取及应用[J]. 化学通报, 2008(4): 265 − 271.
[22] OZDEMIR G, SEZGIN O E. Keratin-rhamnolipids and keratin-sodium dodecyl sulfate interactions at the air/water interface [J]. Colloids and Surfaces B, Biointerfaces, 2006, 52(1): 1 − 7. doi:  10.1016/j.colsurfb.2006.05.008
[23] 张荣, 凌晓宁, 李昆太. 微生物降解角蛋白机制及角蛋白酶应用研究进展[J]. 生物灾害科学, 2020, 43(4): 331 − 337.
[24] WARD H M. Onygena equina, willd., a horn-destroying fungus [J]. Philosophical Transactions of the Royal Society of London Series B:Containing Papers of a Biological Character, 1899, 191: 269 − 291. doi:  10.1098/rstb.1899.0008
[25] 李欣, 韩淑梅, 张芝元, 等. 嗜角蛋白真菌的界定、研究方法及其应用价值[J]. 微生物学通报, 2022, 49(1): 292 − 305.
[26] 韩淑梅, 李欣, 张芝元, 等. 微生物角蛋白酶的特性及其应用研究进展[J]. 微生物学通报, 2021, 48(11): 4315 − 4326.
[27] BROUTA F, DESCAMPS F, FETT T, et al. Purification and characterization of a 43.5 kDa keratinolytic metalloprotease from Microsporum canis [J]. Medical Mycology, 2001, 39(3): 269 − 275. doi:  10.1080/mmy.39.3.269.275
[28] GNAT S, ŁAGOWSKI D, NOWAKIEWICZ A, et al. Population differentiation, antifungal susceptibility, and host range of Trichophyton mentagrophytes isolates causing recalcitrant infections in humans and animals [J]. European Journal of Clinical Microbiology & Infectious Diseases:Official Publication of the European Society of Clinical Microbiology, 2020, 39(11): 2099 − 2113.
[29] ANBU P, GOPINATH S C, HILDA A, et al. Optimization of extracellular keratinase production by poultry farm isolate Scopulariopsis brevicaulis [J]. Bioresour Technol, 2007, 98(6): 1298 − 1303. doi:  10.1016/j.biortech.2006.05.047
[30] 马怡茗, 柯欣, 李晓霞, 等. 角蛋白酶基因gm2886在密旋链霉菌ACT12中的表达及鉴定[J]. 生物工程学报, 2017, 33(12): 1968 − 1978.
[31] NOVAL J J, NICKERSON W J. Decomposition of native keratin by Streptomyces fradiae [J]. Journal of Bacteriology, 1959, 77(3): 251 − 263. doi:  10.1128/jb.77.3.251-263.1959
[32] KUBLANOV I V, TSIRUL'NIKOV K B, KALIBERDA E N, et al. Keratinase of an anaerobic thermophilic bacterium Thermoanaerobacter sp. strain 1004-09 isolated from a hot spring in the Baikal Rift zone [J]. Mikrobiologiia, 2009, 78(1): 79 − 88.
[33] LI Q. Structure, application, and biochemistry of microbial keratinases [J]. Frontiers in Microbiology, 2021, 12: 674345. doi:  10.3389/fmicb.2021.674345
[34] GEGECKAS A, GUDIUKAITĖ R, DEBSKI J, et al. Keratinous waste decomposition and peptide production by keratinase from Geobacillus stearothermophilus AD-11 [J]. Int J Biol Macromol, 2015, 75: 158 − 165. doi:  10.1016/j.ijbiomac.2015.01.031
[35] CHAYA E, SUZUKI T, KARITA S, et al. Sequence analysis and heterologous expression of the wool cuticle-degrading enzyme encoding genes in Fusarium oxysporum 26-1 [J]. Journal of Bioscience and Bioengineering, 2014, 117(6): 711 − 714. doi:  10.1016/j.jbiosc.2013.11.012
[36] MONOD M, LÉCHENNE B, JOUSSON O, et al. Aminopeptidases and dipeptidyl-peptidases secreted by the dermatophyte Trichophyton rubrum [J]. Microbiology (Reading, England), 2005, 151(1): 145 − 155. doi:  10.1099/mic.0.27484-0
[37] ZAUGG C, JOUSSON O, LÉCHENNE B, et al. Trichophyton rubrum secreted and membrane-associated carboxypeptidases [J]. International Journal of Medical Microbiology:IJMM, 2008, 298(7-8): 669 − 682. doi:  10.1016/j.ijmm.2007.11.005
[38] ZAUGG C, MONOD M, WEBER J, et al. Gene expression profiling in the human pathogenic dermatophyte Trichophyton rubrum during growth on proteins [J]. Eukaryotic Cell, 2009, 8(2): 241 − 250. doi:  10.1128/EC.00208-08
[39] WU B, SHI P, LI J, et al. A new aminopeptidase from the keratin-degrading strain Streptomyces fradiae var. k11 [J]. Applied Biochemistry and Biotechnology, 2010, 160(3): 730 − 739. doi:  10.1007/s12010-009-8537-8
[40] LEE Y J, DHANASINGH I, AHN J S, et al. Biochemical and structural characterization of a keratin-degrading M32 carboxypeptidase from Fervidobacterium islandicum AW-1 [J]. Biochemical and Biophysical Research Communications, 2015, 468(4): 927 − 933. doi:  10.1016/j.bbrc.2015.11.058
[41] TAMURA K, PETERSON D, PETERSON N, et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods [J]. Molecular Biology and Evolution, 2011, 28(10): 2731 − 2739. doi:  10.1093/molbev/msr121
[42] PENG Z, ZHANG J, DU G, et al. Keratin waste recycling based on microbial degradation: Mechanisms and prospects [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(11): 9727 − 9736.
[43] ŁABA W, CHOIŃSKA A, RODZIEWICZ A. The release of sulfur compounds during degradation of feather keratin by two Bacillus strains [J]. Wrocław University of Environmental and Life Sciences, 2013, 12(2): 29 − 40.
[44] LIANG X, BIAN Y, TANG X F, et al. Enhancement of keratinolytic activity of a thermophilic subtilase by improving its autolysis resistance and thermostability under reducing conditions [J]. Applied Microbiology and Biotechnology, 2010, 87(3): 999 − 1006. doi:  10.1007/s00253-010-2534-2
[45] NAVONE L, SPEIGHT R. Understanding the dynamics of keratin weakening and hydrolysis by proteases [J]. PloS One, 2018, 13(8): 1 − 21.
[46] BOCKLE B, MULLER R. Reduction of disulfide bonds by Streptomyces pactum during growth on chicken feathers [J]. Applied and Environmental Microbiology, 1997, 63(2): 790 − 792. doi:  10.1128/aem.63.2.790-792.1997
[47] MERCER D K, STEWART C S. Keratin hydrolysis by dermatophytes [J]. Medical Mycology, 2019, 57(1): 13 − 22. doi:  10.1093/mmy/myx160
[48] GHOSH A, CLERENS S, DEB-CHOUDHURY S, et al. Thermal effects of ionic liquid dissolution on the structures and properties of regenerated wool keratin [J]. Polymer Degradation and Stability, 2014, 108: 108 − 115. doi:  10.1016/j.polymdegradstab.2014.06.007
[49] BYUN T, KOFOD L, BLINKOVSKY A. Synergistic action of an X-prolyl dipeptidyl aminopeptidase and a non-specific aminopeptidase in protein hydrolysis [J]. Journal of Agricultural and Food Chemistry, 2001, 49(4): 2061 − 2063. doi:  10.1021/jf001091m
[50] SHARMA I, KANGO N. Production and characterization of keratinase by Ochrobactrum intermedium for feather keratin utilization [J]. Int J Biol Macromol, 2021, 166: 1046 − 1056. doi:  10.1016/j.ijbiomac.2020.10.260
[51] FONTOURA R, DAROIT D J, CORREA A P, et al. Production of feather hydrolysates with antioxidant, angiotensin-I converting enzyme- and dipeptidyl peptidase-IV-inhibitory activities [J]. New Biotechnology, 2014, 31(5): 506 − 513. doi:  10.1016/j.nbt.2014.07.002
[52] MELKE J, MIDHA S, GHOSH S, et al. Silk fibroin as biomaterial for bone tissue engineering [J]. Acta Biomaterialia, 2016, 31: 1 − 16. doi:  10.1016/j.actbio.2015.09.005
[53] HASSAN M A, TAHA T H, HAMAD G M, et al. Biochemical characterisation and application of keratinase from Bacillus thuringiensis MT1 to enable valorisation of hair wastes through biosynthesis of vitamin B-complex [J]. Int J Biol Macromol, 2020, 153: 561 − 572. doi:  10.1016/j.ijbiomac.2020.03.032
[54] 腰文颖. 我国家禽生产情况及趋势分析[J]. 兽医导刊, 2021(3): 5 − 7.