[1] 冯美利, 曾鹏, 刘立云. 海南发展油棕概况与前景[J]. 广西热带农业, 2006(4): 37 − 38.
[2] NGANDOEBONGUE G F, AJAMBANG W N, KOONA P, et al. Oil palm[M]// Technological Innovations in Major World Oil Crops, Volume 1. New York: Springer, 2012, 79(2): 165 − 200.
[3] SYLVIE, WECKX, DIRK, et al. Tissue Culture of Oil Palm: Finding the Balance Between Mass Propagation and Somaclonal Variation. [J]. Frontiers in plant science, 2019, 10: 722. doi:  10.3389/fpls.2019.00722
[4] 高尚士. 高产油料树──油棕[J]. 林业科技通讯, 1994(11): 41.
[5] ITHNIN M, XU Y, MARJUNI M, et al. Multiple locus genome-wide association studies for important economic traits of oil palm [J]. Tree Genetics & Genomes, 2017, 13(5): 103.
[6] 陈张彬. 甘蓝型油菜中5个脂酰-ACP硫酯酶基因的克隆及表达分析[D]. 长沙: 湖南农业大学, 2018.
[7] 元冬娟, 吴湃, 江黎明. 高等植物的酰基-ACP硫酯酶研究进展[J]. 中国油料作物学报, 2009, 31(1): 103-108.
[8] 王凯. 木姜子FATB基因的克隆和功能分析[D]. 杨凌: 西北农林科技大学, 2019.
[9] SALAS J J, OHLROGGE J B. Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases [J]. Archives of Biochemistry and Biophysics, 2002, 403(1): 25 − 34.
[10] DONG S, LIU Y, XIONG B, et al. Transcriptomic analysis of a potential bioenergy tree, Pistacia chinensis Bunge, and identification of candidate genes involved in the biosynthesis of oil [J]. BioEnergy Research, 2016, 9(3): 740 − 749. doi:  10.1007/s12155-016-9716-4
[11] 李昊远, 郝翠翠, 潘丽娟, 等. 花生酰基载体蛋白硫酯酶(FATB2)基因的克隆与表达分析[J]. 花生学报, 2017, 46(4): 7 − 14. doi:  10.14001/j.issn.1002-4093.2017.04.002
[12] CHEN X, DUAN X, WANG S, et al. Virus-induced gene silencing (VIGS) for functional analysis of MYB80 gene involved in Solanum lycopersicum cold tolerance [J]. Protoplasma, 2019, 256(2): 409 − 418. doi:  10.1007/s00709-018-1302-5
[13] 金龙飞, 尹欣幸, 曹红星. 油棕体细胞胚胎发生的研究进展[J]. 江苏农业科学, 2021, 49(13): 29-35. doi:  10.15889/j.issn.1002-1302.2021.13.006
[14] WOITTIEZ L S, VAN WIJK M T, SLINGERLAND M, et al. Yield gaps in oil palm: a quantitative review of contributing factors [J]. European Journal of Agronomy, 2017, 83: 57 − 77. doi:  10.1016/j.eja.2016.11.002
[15] 范世航, 刘念, 华玮. 油料作物油脂合成调控研究进展[J]. 中国油料作物学报, 2021, 43(3): 361-375. doi:  10.19802/j.issn.1007-9084.2021097
[16] KACZMARZYK D, HUDSON E P, FULDA M. Arabidopsis acyl-acyl carrier protein synthetase AAE15 with medium chain fatty acid specificity is functional in cyanobacteria [J]. AMB Express, 2016, 6(1): 7. doi:  10.1186/s13568-015-0169-5
[17] TAN K W M, LEE Y K. Expression of the heterologous Dunaliella tertiolecta fatty acyl-ACP thioesterase leads to increased lipid production in Chlamydomonas reinhardtii [J]. Journal of Biotechnology, 2017, 247: 60 − 67. doi:  10.1016/j.jbiotec.2017.03.004
[18] HAWKINS D J, KRIDL J C. Characterization of acyl-ACP thioesterases of mangosteen (Garcinia mangostana) seed and high levels of stearate production in transgenic canola. [J]. The Plant Journal: for Cell and Molecular Biology, 1998, 13(6): 743 − 752.
[19] MORENO-PÉREZ A J, VENEGAS-CALERÓN M, VAISTIJ F E, et al. Reduced expression of FatA thioesterases in Arabidopsis affects the oil content and fatty acid composition of the seeds [J]. Planta, 2012, 235(3): 629 − 639. doi:  10.1007/s00425-011-1534-5
[20] 郝昭程, 王腾飞, 李忠奎, 等. 拟南芥硫酯酶基因在毕赤酵母中的表达[J]. 生物工程学报, 2015, 31(1): 115-122.
[21] JARVIS B A, ROMSDAHL T B, MCGINN M G , et al. CRISPR/Cas9-induced fad2 and rod1 mutations stacked with fae1 confer high oleic acid seed oil in pennycress (Thlaspi arvense L.) [J]. Frontiers in Plant Science, 2021(12):652319.