[1] 赵维峰, 孙光明, 李绍鹏, 等. 园艺植物原生质体培养及应用[J]. 热带农业科学, 2004, 24(2): 48 − 53. doi:  10.3969/j.issn.1009-2196.2004.02.011
[2] 陈鹏. 马铃薯叶片和悬浮细胞原生质体的分离与培养 [D]. 兰州: 甘肃农业大学, 2014.
[3] NAGATA T, TAKEBE I. Plating of isolated tobacco mesophyll protoplasts on agar medium[J]. Planta, 1971, 99(1): 12 − 20. doi:  10.1007/BF00392116
[4] BARNES A C, ELOWSKY C G, ROSTON R L. An Arabidopsis protoplast isolation method reduces cytosolic acidification and activation of the chloroplast stress sensor SENSITIVE TO FREEZING 2[J]. Plant Signaling & Behavior, 2019, 14(9): 1629270.
[5] KANAI R, EDWARDS G E. Separation of mesophyll protoplasts and bundle sheath cells from maize leaves for photosynthetic studies[J]. Plant Physiology, 1973, 51(6): 1133 − 1137. doi:  10.1104/pp.51.6.1133
[6] TORIYAMA K, HINATA K. Cell suspension and protoplast culture in rice[J]. Plant Science, 1985, 41(3): 179 − 183. doi:  10.1016/0168-9452(85)90086-X
[7] 戴雪梅, 黄天带, 孙爱花, 等. 橡胶树原生质体培养研究进展[J]. 热带作物学报, 2011, 32(10): 1973 − 1976. doi:  10.3969/j.issn.1000-2561.2011.10.036
[8] 李青, 鱼海鹏, 张子豪, 等. 棉花真叶原生质体分离及瞬时表达体系的优化[J]. 中国农业科学, 2021, 54(21): 4514 − 4524. doi:  10.3864/j.issn.0578-1752.2021.21.003
[9] HIRATA H, OHNISHI T, ISHIDA H, et al. Functional characterization of aromatic amino acid aminotransferase involved in 2-phenylethanol biosynthesis in isolated rose petal protoplasts[J]. Journal of Plant Physiology, 2012, 169(5): 444 − 451. doi:  10.1016/j.jplph.2011.12.005
[10] W HU W, M WONG S, S LOH C, et al. Synergism in replication of cymbidium mosaic potexvirus (CymMV) and odontoglossum ringspot tobamovirus (ORSV) RNA in orchid protoplasts[J]. Archives of Virology, 1998, 143(7): 1265 − 1275. doi:  10.1007/s007050050374
[11] 翟妞, 徐国云, 张慧, 等. 烟草根细胞原生质体的制备[J]. 烟草科技, 2022, 55(10): 39 − 43. doi:  10.3969/j.issn.1002-0861.2022.10.yckj202210006
[12] 曹春艳, 王威, 杨新奇, 等. 槟榔原生质体分离及瞬时转化体系的建立[J/OL]. 分子植物育种. https://kns.cnki.net/kcms/detail/46.1068.s.20220825.1138.004.html
[13] 尚飞, 李咪咪, 李莉, 等. 烟草原生质体的制备和分析[J]. 河南师范大学学报(自然科学版), 2013, 41(3): 130 − 132. doi:  10.16366/j.cnki.1000-2367.2013.03.048
[14] 赵苏州, 卢运明, 张占路, 等. 玉米和拟南芥的原生质体制备及瞬时表达体系的研究[J]. 安徽农业科学, 2014, 42(12): 3479 − 3482. doi:  10.3969/j.issn.0517-6611.2014.12.007
[15] 顾元钦, 郑健云, 钟婉欣, 等. 金花茶叶片原生质体制备条件的优化[J/OL]. 分子植物育种. https://kns.cnki.net/kcms/detail/46.1068.s.20230309.1500.006.html
[16] 李炆岱, 张琪, 王英姿, 等. ‘白天堂’百合原生质体的分离纯化与培养[J]. 北京农学院学报, 2023, 38(1): 76 − 81.
[17] 刘鑫, 魏学宁, 张学文, 等. 小麦原生质体高效转化体系的建立[J]. 植物遗传资源学报, 2017, 18(1): 117 − 124. doi:  10.13430/j.cnki.jpgr.2017.01.015
[18] 李楠, 朱旭, 张玲, 等. 马铃薯‘春薯 4 号’原生质体的分离纯化[J]. 东北农业科学, 2023, 48(5): 56 − 60.
[19] 王鹏, 曾丽, 刘国锋, 等. 矮牵牛叶肉原生质体分离条件的优化[J]. 上海交通大学学报(农业科学版), 2016, 34(6): 55 − 60.
[20] 张金鹏, 韩玉珠, 张晓旭, 等. 菜豆叶片原生质体的分离条件[J]. 吉林农业大学学报, 2014, 36(5): 570 − 574. doi:  10.13327/j.jjlau.2014.2046
[21] 席昱欣, 张玉慧, 闻志彬. 松叶猪毛菜叶片原生质体的制备及优化[J]. 干旱区研究, 2023, 40(4): 655 − 662. doi:  10.13866/j.azr.2023.04.14
[22] 高成昱, 王艺衡, 靳江周, 等. 梨叶片原生质体制备方法的建立及其基因瞬时转化试验[J]. 园艺学报, 2023, 50(5): 1141 − 1150. doi:  10.16420/j.issn.0513-353x.2022-0264
[23] 赵峥畑, 张晓璐, 程堂仁, 等. 连翘叶片原生质体分离及瞬时转化[J]. 西北农林科技大学学报(自然科学版), 2023, 51(4): 130 − 136. doi:  10.13207/j.cnki.jnwafu.2023.04.015
[24] 沈雁翔, 梁言, 王鹏, 等. 舞春花原生质体分离条件的优化研究[J]. 上海农业科技, 2022(2): 15 − 18. doi:  10.3969/j.issn.1001-0106.2022.02.006
[25] 李寒青, 曲雪亭, 刘佳文, 等. 白桦叶片原生质体分离条件的优化探究[J/OL]. 分子植物育种. https://kns.cnki.net/kcms/detail/46.1068.s.20220329.1924.021.html
[26] 于相丽, 李勇慧, 郭小妞. 油麦菜原生质体分离条件的优化研究[J]. 农业科学研究, 2019, 40(1): 91 − 93. doi:  10.3969/j.issn.1673-0747.2019.01.016
[27] 牛瑜菲, 彭建营. 酸枣花粉原生质体的分离条件研究[J]. 中国农学通报, 2019, 35(32): 53 − 56. doi:  10.11924/j.issn.1000-6850.casb18070095
[28] 张娅, 刘晓烽, 张婧, 等. 茉莉花原生质体瞬时表达体系的建立及应用[J]. 福建农林大学学报(自然科学版), 2019, 48(6): 727 − 735. doi:  10.13323/j.cnki.j.fafu(nat.sci.).2019.06.007
[29] 胡斌盛, 周纯贤, 郑健云, 等. 穿心莲花药愈伤组织原生质体分离条件初探[J/OL]. 分子植物育种. https://kns.cnki.net/kcms/detail/46.1068.s.20230317.0907.002.html
[30] 苏彤. 大豆愈伤原生质体的制备、培养和转化的研究 [D]. 上海: 上海交通大学, 2019.
[31] 王琪, 雷秀娟, 张浩, 等. 三七原生质体的制备[J]. 江苏农业科学, 2020, 48(19): 45 − 48. doi:  10.15889/j.issn.1002-1302.2020.19.009
[32] 王礼强, 杨瑞, 袁伯川, 等. 光果甘草原生质体分离条件优化[J]. 生物技术通讯, 2015, 26(5): 687 − 690. doi:  10.3969/j.issn.1009-0002.2015.05.023
[33] 舒小娟, 温腾建, 邢佳毅, 等. 葡萄原生质体分离及瞬时转化体系的建立[J]. 西北植物学报, 2015, 35(6): 1262 − 1268. doi:  10.7606/j.issn.1000-4025.2015.06.1262
[34] 牛晓茹, 景欢欢, 田宁, 等. 萱草原生质体制备体系的优化[J]. 湖南生态科学学报, 2022, 9(4): 60 − 68. doi:  10.3969/j.issn.2095-7300.2022.04.008
[35] 段炼, 钱君, 郭小雨, 等. 一种快速高效的水稻原生质体制备和转化方法的建立[J]. 植物生理学报, 2014, 50(3): 351 − 357. doi:  10.13592/j.cnki.ppj.2014.03.002
[36] 李南, 杨秀平, 周正君, 等. 花椒原生质体分离与培养研究[J]. 西北林学院学报, 2018, 33(6): 100 − 105. doi:  10.3969/j.issn.1001-7461.2018.06.17
[37] WU F H, SHEN S C, LEE L Y, et al. Tape-Arabidopsis Sandwich: a simpler Arabidopsis protoplast isolation method[J]. Plant Methods, 2009, 5: 16. doi:  10.1186/1746-4811-5-16
[38] CAO J, YAO D, LIN F, et al. PEG-mediated transient gene expression and silencing system in maize mesophyll protoplasts: a valuable tool for signal transduction study in maize[J]. Acta Physiologiae Plantarum, 2014, 36(5): 1271 − 1281. doi:  10.1007/s11738-014-1508-x
[39] ZHANG Y, SU J, DUAN S, et al. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes[J]. Plant Methods, 2011, 7(1): 30. doi:  10.1186/1746-4811-7-30
[40] JONES A M P, SHUKLA M R, BISWAS G C G, et al. Protoplast-to-plant regeneration of American elm (Ulmus americana)[J]. Protoplasma, 2015, 252(3): 925 − 931. doi:  10.1007/s00709-014-0724-y
[41] 王飞, 钟雄辉, 陈登辉, 等. 甘蓝原生质体制备体系优化及瞬时转化体系的建立[J]. 华北农学报, 2020, 35(3): 69 − 78. doi:  10.7668/hbnxb.20191112
[42] 赵小慧, 郁凯, 刘冲, 等. 玉米叶片原生质体瞬时转化体系的优化[J]. 大麦与谷类科学, 2022, 39(6): 6 − 10.
[43] AOYAGI H. Development of a quantitative method for determination of the optimal conditions for protoplast isolation from cultured plant cells[J]. Biotechnology Letters, 2006, 28(20): 1687 − 1694. doi:  10.1007/s10529-006-9140-5
[44] 吴元华, 董雪, 安梦楠, 等. 烟草原生质体制备体系的优化及PVYN导入研究[J]. 沈阳农业大学学报, 2015, 46(1): 26 − 30. doi:  10.3969/j.issn.1000-1700.2015.01.005
[45] 陈名红, 熊 立, 陈学军. 烟草叶肉原生质体分离和纯化研究[J]. 云南民族大学学报(自然科学版), 2005, 14(4): 326 − 329.
[46] YAO L, LIAO X, GAN Z, et al. Protoplast isolation and development of a transient expression system for sweet cherry (Prunus avium L.)[J]. Scientia Horticulturae, 2016, 209: 14 − 21.
[47] SHEEN J. Signal transduction in maize and Arabidopsis mesophyll protoplasts[J]. Plant Physiology, 2001, 127(4): 1466 − 1475. doi:  10.1104/pp.010820
[48] NASSOUR M, DORION N. Plant regeneration from protoplasts of micropropagated Pelargonium x hortorumAlain’: effect of some environmental and medium factors on protoplast system efficiency[J]. Plant Science, 2002, 163(1): 169 − 176. doi:  10.1016/S0168-9452(02)00093-6
[49] LI D, TANG Y, LIN J, et al. Methods for genetic transformation of filamentous fungi[J]. Microbial Cell Factories, 2017, 16(1): 168. doi:  10.1186/s12934-017-0785-7
[50] KLEBE R J, HARRISS J V, SHARP Z D, et al. A general method for polyethylene-glycol-induced genetic transformation of bacteria and yeast[J]. Gene, 1983, 25(2/3): 333 − 341.
[51] BATES G W. Plant transformation via protoplast electroporation[J]. Methods in Molecular Biology, 1999, 111: 359 − 366.
[52] LANIGAN T M, KOPERA H C, SAUNDERS T L. Principles of genetic engineering[J]. Genes, 2020, 11(3): 291. doi:  10.3390/genes11030291
[53] BIBB M J, WARD J M, HOPWOOD D A. Transformation of plasmid DNA into Streptomyces at high frequency[J]. Nature, 1978, 274(5669): 398 − 400. doi:  10.1038/274398a0
[54] 孙鹤, 郎志宏, 朱莉, 等. 玉米、小麦、水稻原生质体制备条件优化[J]. 生物工程学报, 2013, 29(2): 224 − 234. doi:  10.13345/j.cjb.2013.02.007
[55] KANG H, NAING A H, PARK S K, et al. Protoplast isolation and transient gene expression in different petunia cultivars[J]. Protoplasma, 2023, 260(1): 271 − 280. doi:  10.1007/s00709-022-01776-9
[56] WU J Z, LIU Q, GENG X S, et al. Highly efficient mesophyll protoplast isolation and PEG-mediated transient gene expression for rapid and large-scale gene characterization in cassava (Manihot esculenta Crantz)[J]. BMC Biotechnology, 2017, 17(1): 29. doi:  10.1186/s12896-017-0349-2
[57] WANG P, PU Y, ABID M A, et al. A rapid and efficient method for isolation and transformation of cotton callus protoplast[J]. International Journal of Molecular Sciences, 2022, 23(15): 8368. doi:  10.3390/ijms23158368
[58] LEE M H, LEE J, CHOI S A, et al. Efficient genome editing using CRISPR-Cas9 RNP delivery into cabbage protoplasts via electro-transfection[J]. Plant Biotechnology Reports, 2020, 14(6): 695 − 702. doi:  10.1007/s11816-020-00645-2
[59] WóJCIK A, RYBCZYŃSKI J J. Electroporation and morphogenic potential of Gentiana kurroo (Royle) embryogenic cell suspension protoplasts[J]. BioTechnologia, 2015, 1: 19 − 29. doi:  10.5114/bta.2015.54170
[60] YU J, TU L, SUBBURAJ S, et al. Simultaneous targeting of duplicated genes in Petunia protoplasts for flower color modification via CRISPR-Cas9 ribonucleoproteins[J]. Plant Cell Reports, 2021, 40(6): 1037 − 1045. doi:  10.1007/s00299-020-02593-1
[61] CRAIG W, GARGANO D, SCOTTI N, et al. Direct gene transfer in potato: a comparison of particle bombardment of leaf explants and PEG-mediated transformation of protoplasts[J]. Plant Cell Reports, 2005, 24(10): 603 − 611. doi:  10.1007/s00299-005-0018-0
[62] YOO S D, CHO Y H, SHEEN J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis[J]. Nature Protocols, 2007, 2(7): 1565 − 1572. doi:  10.1038/nprot.2007.199
[63] TRINIDAD J L, LONGKUMER T, KOHLI A. Rice protoplast isolation and transfection for transient gene expression analysis[J]. Methods in Molecular Biology, 2021, 2238: 313 − 324.
[64] JORES T, TONNIES J, WRIGHTSMAN T, et al. Synthetic promoter designs enabled by a comprehensive analysis of plant core promoters[J]. Nature Plants, 2021, 7(6): 842 − 855. doi:  10.1038/s41477-021-00932-y
[65] YU G, CHENG Q, XIE Z, et al. An efficient protocol for perennial ryegrass mesophyll protoplast isolation and transformation, and its application on interaction study between LpNOL and LpNYC1[J]. Plant Methods, 2017, 13: 46. doi:  10.1186/s13007-017-0196-0
[66] MACKON E, MA Y, JEAZET DONGHO EPSE MACKON G C, et al. Subcellular localization and vesicular structures of anthocyanin pigmentation by fluorescence imaging of black rice (Oryza sativa L.) stigma protoplast[J]. Plants, 2021, 10(4): 685. doi:  10.3390/plants10040685
[67] PATIL G B, STUPAR R M, ZHANG F. Protoplast isolation, transfection, and gene editing for soybean (Glycine max)[J]. Methods in Molecular Biology, 2022, 2464: 173 − 186.
[68] ROLLAND V. Determining the subcellular localization of fluorescently tagged proteins using protoplasts extracted from transiently transformed Nicotiana benthamiana leaves[J]. Methods in Molecular Biology, 2018, 1770: 263 − 283.
[69] 仝亚楠, 刘雪, 刘秀洁, 等. 苋菜原生质体和瞬时转化体系的建立及应用[J]. 分子植物育种, 2021, 19(19): 6476 − 6481. doi:  10.13271/j.mpb.019.006476
[70] PRIYADARSHANI S V G N, HU B, LI W, et al. Simple protoplast isolation system for gene expression and protein interaction studies in pineapple (Ananas comosus L.)[J]. Plant Methods, 2018, 14: 95. doi:  10.1186/s13007-018-0365-9
[71] HUO A, CHEN Z, WANG P, et al. Establishment of transient gene expression systems in protoplasts from Liriodendron hybrid mesophyll cells[J]. PLoS One, 2017, 12(3): e0172475. doi:  10.1371/journal.pone.0172475
[72] HU Y, HUANG Y. Isolation and transfection of maize endosperm protoplasts[J]. Methods in Molecular Biology, 2022, 2464: 105 − 121.
[73] JIA N, ZHU Y, XIE F. An efficient protocol for model legume root protoplast isolation and transformation[J]. Frontiers in Plant Science, 2018, 9: 670. doi:  10.3389/fpls.2018.00670
[74] LIN H Y, CHEN J C, FANG S C. A protoplast transient expression system to enable molecular, cellular, and functional studies in Phalaenopsis orchids[J]. Frontiers in Plant Science, 2018, 9: 843. doi:  10.3389/fpls.2018.00843
[75] LIU Y, XIONG Y. Protoplast for gene functional analysis in Arabidopsis[J]. Methods in Molecular Biology, 2022, 2464: 29 − 47.
[76] WU F, HANZAWA Y. A simple method for isolation of soybean protoplasts and application to transient gene expression analyses[J]. Journal of Visualized Experiments:JoVE, 2018(131): 57258.
[77] BULL S E, ALDER A, BARSAN C, et al. FLOWERING LOCUS T triggers early and fertile flowering in glasshouse cassava (Manihot esculenta crantz)[J]. Plants, 2017, 6(2): 22.
[78] RATHER G A, AYZENSHTAT D, TEPER-BAMNOLKER P, et al. Advances in protoplast transfection promote efficient CRISPR/Cas9-mediated genome editing in tetraploid potato[J]. Planta, 2022, 256(1): 14. doi:  10.1007/s00425-022-03933-z
[79] MEYER C M, GOLDMAN I L, GRZEBELUS E, et al. Efficient production of transgene-free, gene-edited carrot plants via protoplast transformation[J]. Plant Cell Reports, 2022, 41(4): 947 − 960. doi:  10.1007/s00299-022-02830-9
[80] PODDAR S, TANAKA J, CATE J H D, et al. Efficient isolation of protoplasts from rice calli with pause points and its application in transient gene expression and genome editing assays[J]. Plant Methods, 2020, 16(1): 151. doi:  10.1186/s13007-020-00692-4
[81] HYDEN B, YUAN G, LIU Y, et al. Protoplast-based transient expression and gene editing in shrub willow (Salix purpurea L. )[J]. Plants, 2022, 11(24): 3490. doi:  10.3390/plants11243490
[82] KIM D, ALPTEKIN B, BUDAK H. CRISPR/Cas9 genome editing in wheat[J]. Functional & Integrative Genomics, 2018, 18(1): 31 − 41.
[83] DENYER T, MA X, KLESEN S, et al. Spatiotemporal developmental trajectories in the Arabidopsis root revealed using high-throughput single-cell RNA sequencing[J]. Developmental Cell, 2019, 48(6): 840 − 852.e5. doi:  10.1016/j.devcel.2019.02.022
[84] LIU H, HU D, DU P, et al. Single-cell RNA-seq describes the transcriptome landscape and identifies critical transcription factors in the leaf blade of the allotetraploid peanut (Arachis hypogaea L.)[J]. Plant Biotechnology Journal, 2021, 19(11): 2261 − 2276. doi:  10.1111/pbi.13656
[85] LIU Q, LIANG Z, FENG D, et al. Transcriptional landscape of rice roots at the single-cell resolution[J]. Molecular Plant, 2021, 14(3): 384 − 394. doi:  10.1016/j.molp.2020.12.014
[86] CHEN Y, TONG S, JIANG Y, et al. Transcriptional landscape of highly lignified poplar stems at single-cell resolution[J]. Genome Biology, 2021, 22(1): 319. doi:  10.1186/s13059-021-02537-2
[87] PEINA ZHOU;HONGYU CHEN;JINGJIE DANG, et al. Single-cell transcriptome of Nepeta tenuifolia leaves reveal differentiation trajectories in glandular trichomes[J]. Frontiers in Plant Science, 2022, 13: 988594. doi:  10.3389/fpls.2022.988594