[1] DIXON R K, SOLOMON A M, BROWN S, et al. Carbon pools and flux of global forest ecosystems [J]. Science, 1994, 263(5144): 185 − 190. doi:  10.1126/science.263.5144.185
[2] 刘国华, 傅伯杰, 方精云. 中国森林碳动态及其对全球碳平衡的贡献[J]. 生态学报, 2000, 20(5): 733 − 740. doi:  10.3321/j.issn:1000-0933.2000.05.004
[3] 王春林, 于贵瑞, 周国逸, 等. 鼎湖山常绿针阔叶混交林CO2通量估算[J]. 中国科学(D辑: 地球科学), 2006, 36(S1): 119 − 129.
[4] BONAN G B. Forests and climate c hange: Forcings, feedbacks, and the climate benefits of forests [J]. Science, 2008, 320(5882): 1444 − 1449. doi:  10.1126/science.1155121
[5] 方精云, 郭兆迪, 朴世龙, 等. 1981—2000年中国陆地植被碳汇的估算[J]. 中国科学(D辑: 地球科学), 2007, 37(6): 804 − 812.
[6] Chevallier J. Carbon futures and macroeconomic risk factors: A view from the EU ETS [J]. Energy economics, 2009, 31(4): 614 − 25. doi:  10.1016/j.eneco.2009.02.008
[7] FAN S, GLOOR M, MAHLMAN J, et al. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models [J]. Science, 1998, 282(5388): 442 − 446. doi:  10.1126/science.282.5388.442
[8] SUNTHARALINGAM P, SPIVAKOVSKY C M, LOGAN J A, et al. Estimating the distribution of terrestrial CO2 sources and sinks from atmospheric measurements: Sensitivity to configuration of the observation network [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D15): 1 − 42.
[9] SHAW M R, ZAVALETA E S, CHIARIELLO N R, et al. Grassland responses to global environmental changes suppressed by elevated CO2 [J]. Science, 2002, 298(5600): 1987 − 1990. doi:  10.1126/science.1075312
[10] CANADELL J G, MOONEY H A, BALDOCCHI D D, et al. Carbon metabolism of the terrestrial biosphere: A multitechnique approach for improved understanding [J]. Ecosystems, 2000, 3(2): 115 − 130. doi:  10.1007/s100210000014
[11] OSBORNE C P, DRAKE B G, LAROCHE J, et al. Does long-term elevation of CO2 concentration increase photosynthesis in forest floor vegetation? (Indiana Strawberry in a Maryland Forest). [J]. Plant Physiology, 1997, 114(1): 337 − 344. doi:  10.1104/pp.114.1.337
[12] 谭正洪, 张一平, 于贵瑞, 等. 热带季节雨林林冠上方和林内近地层CO2浓度的时空动态及其成因分析[J]. 植物生态学报, 2008, 32(3): 555 − 567. doi:  10.3773/j.issn.1005-264x.2008.03.004
[13] 陈步峰, 林明献, 李意德, 等. 海南尖峰岭热带山地雨林近冠层CO2及通量特征研究[J]. 生态学报, 2001, 21(12): 2166 − 2172. doi:  10.3321/j.issn:1000-0933.2001.12.029
[14] 焦振, 王传宽, 王兴昌. 温带落叶阔叶林冠层CO2浓度的时空变异[J]. 植物生态学报, 2011, 35(5): 512 − 522.
[15] 陈晓峰, 江洪, 孙文文, 等. 安吉毛竹林生长季CO2浓度的时空特征[J]. 生态学杂志, 2016, 35(5): 1162 − 1169.
[16] GROSSO S D, PARTON W, STOHLGREN T, et al. Global potential net primary production predicted from vegetation class, precipitation, and temperature [J]. Ecology, 2008, 89(8): 2117 − 2126. doi:  10.1890/07-0850.1
[17] IRISARRI J G N, OESTERHELD M, PARUELO J M, et al. Patterns and controls of above‐ground net primary production in meadows of Patagonia. A remote sensing approach [J]. Journal of Vegetation Science, 2012, 23(1): 114 − 126. doi:  10.1111/j.1654-1103.2011.01326.x
[18] CLEVELAND C C, TAYLOR P, CHADWICK K D, et al. A comparison of plot‐based satellite and Earth system model estimates of tropical forest net primary production [J]. Global Biogeochemical Cycles, 2015, 29(5): 1 − 19.
[19] 董丹, 倪健. 利用CASA模型模拟西南喀斯特植被净第一性生产力[J]. 生态学报, 2011, 31(7): 1855 − 1866.
[20] 李传华, 韩海燕, 范也平, 等. 基于Biome-BGC模型的青藏高原五道梁地区NPP变化及情景模拟[J]. 地理科学, 2019, 39(8): 1330 − 1339.
[21] 张清雨, 吴绍洪, 赵东升, 等. 内蒙古草地生长季植被变化对气候因子的响应[J]. 自然资源学报, 2013, 28(5): 754 − 764. doi:  10.11849/zrzyxb.2013.05.005
[22] 季树新, 王理想, 白雪莲, 等. 不同林龄人工梭梭林对降雨的滞后响应[J]. 干旱区研究, 2020, 37(2): 349 − 356.
[23] 刘春雨, 董晓峰, 刘英英. 不同尺度视角下大敦煌NPP分布格局研究[J]. 资源科学, 2014, 36(2): 406 − 412.
[24] 王媛, 张娜, 于贵瑞. 千烟洲马尾松人工林生态系统的碳循环模拟及模型参数的敏感性分析[J]. 应用生态学报, 2010, 21(7): 1656 − 1666.
[25] 韩其飞, 罗格平, 李超凡, 等. 基于Biome-BGC模型的天山北坡森林生态系统碳动态模拟[J]. 干旱区研究, 2014, 31(3): 375 − 382.
[26] PAULICK S, DISLICH C, HOMEIER J, et al. The carbon fluxes in different successional stages: Modelling the dynamics of tropical montane forests in South Ecuador [J]. Forest Ecosystems, 2017, 4(2): 143 − 153.
[27] 侯元兆. 中国热带森林的分布、类型和特点[J]. 世界林业研究, 2003, 16(03): 47 − 51. doi:  10.3969/j.issn.1001-4241.2003.03.010
[28] 崔乙斌, 廖立国, 赵俊福, 等. 吊罗山低地森林不同地形土壤的呼吸变化[J]. 热带生物学报, 2020, 11(2): 231 − 237.
[29] COOK-PATTON S C, LEAVITT S M, GIBBS D, et al. Mapping carbon accumulation potential from global natural forest regrowth [J]. Nature, 2020, 585(7826): 545 − 550. doi:  10.1038/s41586-020-2686-x
[30] PHILIPSON C D, CUTLER M E J, BRODRICK PG, et al. Active restoration accelerates the carbon recovery of human-modified tropical forests [J]. Science, 2020, 369(6505): 838 − 841. doi:  10.1126/science.aay4490
[31] MENGPING C, GUANZE W, SHUANGXI Z, et al. Studies on forest ecosystem physiology: Marginal water-use efficiency of a tropical, seasonal, evergreen forest in Thailand [J]. Journal of Forestry Research, 2019, 30(6): 187 − 197.
[32] BEVEN K, BINLEY A. The future of distributed models: Model calibration and uncertainty prediction [J]. Hydrological Processes, 1992, 6(3): 279 − 298. doi:  10.1002/hyp.3360060305
[33] 冯娇娇, 何斌, 王国利, 等. 基于GLUE方法的新安江模型参数不确定性研究[J]. 水电能源科学, 2019, 37(1): 26 − 28.
[34] SHINODA M. Seasonal phase lag between rainfall and vegetation activity in tropical Africa as revealed by NOAA satellite data [J]. International Journal of Climatology, 1995, 15(6): 639 − 656. doi:  10.1002/joc.3370150605
[35] 马雄伟, 赵庆志, 姚顽强. 黄土高原植被对气候变化的时滞响应及其时变特征[J]. 西安科技大学学报, 2020, 40(1): 157 − 166.
[36] MUELLER B, WANG Y, DITTRICH M, et al. Influence of organic carbon decomposition on calcite dissolution in surficial sediments of a freshwater lake [J]. Water Research, 2003, 37(18): 4524 − 4532. doi:  10.1016/S0043-1354(03)00381-6
[37] TOMCZYK N J, ROSEMOND A D, BUMPERS P M, et al. Ignoring temperature variation leads to underestimation of the temperature sensitivity of plant litter decomposition [J]. Ecosphere, 2020, 11(2): 1 − 14.
[38] MANNING D W P, ROSEMOND A D, KOMINOSKI J S, et al. Detrital stoichiometry as a critical nexus for the effects of streamwater nutrients on leaf litter breakdown rates [J]. Ecology, 2015, 96(8): 2214 − 2224. doi:  10.1890/14-1582.1
[39] 王林, 陈文. 标准化降水蒸散指数在中国干旱监测的适用性分析[J]. 高原气象, 2014, 33(2): 423 − 431. doi:  10.7522/j.issn.1000-0534.2013.00048
[40] 崔林丽, 史军, 杨引明, 等. 中国东部植被NDVI对气温和降水的旬响应特征[J]. 地理学报, 2009, 64 (7): 850 − 860. doi:  10.3321/j.issn:0375-5444.2009.07.009
[41] 张一平, 沙丽清, 于贵瑞, 等. 热带季节雨林碳通量年变化特征及影响因子初探[J]. 中国科学(D辑: 地球科学), 2006, 36(S1): 139 − 152.
[42] 赵仲辉, 张利平, 康文星, 等. 湖南会同杉木人工林生态系统CO2通量特征[J]. 林业科学, 2011, 47(11): 6 − 12. doi:  10.11707/j.1001-7488.20111102
[43] 张元媛, 朱万泽, 孙向阳, 等. 川西贡嘎山峨眉冷杉成熟林生态系统CO2通量特征[J]. 生态学报, 2018, 38(17): 6125 − 6135.
[44] 陈亮, 周国模, 杜华强, 等. 基于随机森林模型的毛竹林CO2通量模拟及其影响因子[J]. 林业科学, 2018, 54(8): 1 − 12. doi:  10.11707/j.1001-7488.20180801
[45] OLCHEV A, IBROM A, ROSS T, et al. A modelling approach for simulation of water and carbon dioxide exchange between multi-species tropical rain forest and the atmosphere [J]. Ecological Modelling, 2008, 212(1): 122 − 130.