[1] RAVISHANGDARA A R, DANIEL J S, PORTMANN R W. Nitrous oxide(N2O): The dominant ozone-depleting substance emitted in the 21st Century [J]. Science, 2009, 326(5949): 123 − 125. doi:  10.1126/science.1176985
[2] IPCC. Changes in atmospheric constituents and in radiative forcing[M]. Cambridge University Press, Cambridge, United Kingdom and New York, Cambridge University Press, 2007.
[3] XU X, TIAN H, HUI D. Convergence in the relationship of CO2 and N2O exchanges between soil and atmosphere within terrestrial ecosystems [J]. Global Change Biology, 2008, 14(7): 1651 − 1660. doi:  10.1111/j.1365-2486.2008.01595.x
[4] 武良, 张卫峰, 陈新平, 等. 中国农田氮肥投入和生产效率[J]. 中国土壤与肥料, 2016(4): 76 − 83. doi:  10.11838/sfsc.20160413
[5] 中华人民共和国统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2020.
[6] LI D J, WANG X M. Nitric oxide emission from a typical vegetable field in the Pearl River Delta, China [J]. Atmospheric Environment, 2007, 41(40): 9498 − 9505. doi:  10.1016/j.atmosenv.2007.08.042
[7] 曹兵, 徐秋明, 李亚星, 等. 不同控释肥品种对大白菜产量、氮素吸收和品质的影响[J]. 华北农学报, 2006, 21(3): 41 − 45. doi:  10.3321/j.issn:1000-7091.2006.03.011
[8] WANG J Y, XIONG Z Q, YANG X Y. Fertilizer-induced emission factors and background emissions of N2O from vegetable fields in China [J]. Atmospheric Environment, 2011, 45(38): 6923 − 6929. doi:  10.1016/j.atmosenv.2011.09.045
[9] LI B, BI Z C, XIONG Z Q. Dynamic responses of nitrous oxide emission and nitrogen use efficiency to nitrogen and biochar amendment in an intensified vegetable field in southeastern China [J]. Global Change Biology Bioenergy, 2017, 9(2): 400 − 413. doi:  10.1111/gcbb.12356
[10] TIERLING J, KUHLMANN H. Emissions of nitrous oxide (N2O) affected by pH-related nitrite accumulation during nitrification of N fertilizers [J]. Geoderma, 2018, 310(15): 12 − 21.
[11] PENG Q, QI Y, DONG Y, et al. Soil nitrous oxide emissions from a typical semiarid temperate steppe in inner Mongolia: effects of mineral nitrogen fertilizer levels and forms [J]. Plant and Soil, 2011, 342(1-2): 345 − 357. doi:  10.1007/s11104-010-0699-1
[12] ZHOU R, EL-NAGGAR A, LI Y, et al. Converting rice husk to biochar reduces bamboo soil N2O emissions under different forms and rates of nitrogen additions [J]. Environmental Science and Pollution Research, 2021, 28,(22): 28777 − 28788. doi:  10.1007/s11356-021-12744-w
[13] 王荣辉, 艾绍英, 李盟军, 等. 氮肥形态对菜地土壤N2O排放与小白菜产量的影响[J]. 广东农业科学, 2015, 42(20): 4. doi:  10.3969/j.issn.1004-874X.2015.20.002
[14] 陈浩, 李博, 熊正琴. 减氮及硝化抑制剂对菜地氧化亚氮排放的影响[J]. 土壤学报, 2017, 54(4): 938 − 947.
[15] 胡玉麟, 汤水荣, 陶凯, 等. 优化施肥模式对我国热带地区水稻-豇豆轮作系统N2O和CH4排放的影响[J]. 环境科学, 2019, 40(11): 5182 − 5190.
[16] RASHTI M R, WANG W, MOODY P W, et al. Fertilizer-induced nitrous oxide emissions from vegetable production in the world and the regulating factors: A review [J]. Atmospheric Environment, 2015, 112(7): 225 − 233.
[17] DIAO T T, XIE L Y, GUO L P, et al. Measurements of N2O emissions from different vegetable fields on the North China Plain [J]. Atmospheric Environment, 2013, 72(6): 70 − 76.
[18] 王磊, 程淑兰, 方华军, 等. 外源性 NH4+ 和 NO3 输入对亚热带人工林土壤N2O排放的影响[J]. 土壤学报, 2016, 53(3): 724 − 734.
[19] LEBENDER U, SENBAYRAM M, LAMMEL J, et al. Effect of mineral nitrogen fertilizer forms on N2O emissions from arable soils in winter wheat production [J]. Journal of Plant Nutrition and Soil Science, 2014, 177(5): 722 − 732. doi:  10.1002/jpln.201300292
[20] 谭立山. 农业土壤N2O产生途径及其影响因素研究进展[J]. 亚热带农业研究, 2017, 13(3): 196 − 204.
[21] 姜宁宁, 李玉娥, 华珞, 等. 不同氮源及秸秆添加对菜地土壤N2O排放影响[J]. 土壤通报, 2012, 43(1): 5.
[22] 姚凡云, 刘志铭, 曹玉军, 等. 不同类型氮肥对东北春玉米土壤N2O和CO2昼夜排放的影响[J]. 中国农业科学, 2021, 54(17): 3680 − 3690. doi:  10.3864/j.issn.0578-1752.2021.17.010
[23] 李宝石, 刘文科, 王奇, 等. 根区施用硝化抑制剂DMPP对不同栽培方式下黄瓜产量及根区温室气体排放的影响[J]. 中国农业科技导报, 2021, 23(9): 9.
[24] 吴承杰, 任兰天, 郝冰, 等. 秸秆堆肥部分替代化肥配施硝化抑制剂对冬小麦温室气体排放的影响[J]. 浙江农业学报, 2020, 32(7): 8.
[25] HUANG Y, LI Y, YAO H. Nitrate enhances N2O emission more than ammonium in a highly acidic soil [J]. Journal of Soils & Sediments Protection Risk Assessment & Rem, 2014, 14(1): 146 − 154.
[26] ASING J, SAGGAR S, SINGH J, et al. Assessment of nitrogen losses from urea and an organic manure with and without nitrification inhibitor, dicyandiamide, applied to lettuce under glasshouse conditions [J]. Australian Journal of Soil Research, 2008, 46(6/7): 535 − 541.
[27] JU X T, LU X, GAO Z L, et al. Processes and factors controlling N2O production in an intensively managed low carbon calcareous soil under sub-humid monsoon conditions [J]. Environmental Pollution, 2011, 159(4): 1007 − 1016. doi:  10.1016/j.envpol.2010.10.040
[28] ABALOS D, JEFFERY S, SANZ-COBENA A, et al. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency [J]. Agriculture Ecosystems & Environment, 2014, 189(1): 136 − 144.
[29] 陈晨, 王春隆, 周璐瑶, 等. 施用生物炭和硝化抑制剂对菜地N2O排放和蔬菜产量的影响[J]. 南京农业大学学报, 2017, 40(2): 287 − 294. doi:  10.7685/jnau.201605002
[30] 郭娇, 刘巧, 郭艳杰, 等. 氮肥与硝化抑制剂配施对冷棚芹菜氮素吸收及产量和品质的影响[J]. 河北农业大学学报, 2020, 43(5): 8.
[31] MIN J, SUN H J, KRONZUCKER H J, et al. Comprehensive assessment of the effects of nitrification inhibitor application on reactive nitrogen loss in intensive vegetable production systems [J]. Agriculture Ecosystems & Environment, 2021, 307(28): 107227.
[32] 刘生辉, 吴萌, 胡锋, 等. 添加硝化抑制剂DMPP对红壤水稻土硝化作用及微生物群落功能多样性的影响[J]. 土壤, 2015, 47(2): 349 − 355.
[33] 谢义琴, 张建峰, 姜慧敏, 等. 不同施肥措施对稻田土壤温室气体排放的影响[J]. 农业环境科学学报, 2015, 34(3): 578 − 584. doi:  10.11654/jaes.2015.03.022
[34] 张文学. 生化抑制剂对稻田氮素转化的影响及机理[D]. 北京: 中国农业科学院, 2014.
[35] 张昊青, 赵学强, 张玲玉, 等. 石灰和双氰胺对红壤酸化和硝化作用的影响及其机制[J]. 土壤学报, 2021, 58(1): 169 − 179.
[36] 刘源, 钱薇, 徐仁扣. 双氰胺对施氮肥引起的红壤酸化的抑制作用[J]. 生态与农村环境学报, 2013(1): 5.
[37] ŽUROVEC O, WALL D P, BRENNAN F P, et al. Increasing soil pH reduces fertilizer derived N2O emissions in intensively managed temperate grassland [J]. Agriculture Ecosystems & Environment, 2021, 311(1): 107319.