[1] HADFIELD M G. Biofilms and marine invertebrate larvae:what bacteria produce that larvae use to choose settlement sites[J]. Annual Review of Marine Science, 2011, 3:453-470.
[2] HUANG S, HADFIELD M G. Composition and density of bacterial biofilms determine larval settlement of the polychaete Hydroides elegans[J]. Marine Ecology Progress Series, 2003, 260:161-172.
[3] 周轩,郭行磐,陈芋如,等.低湿度表面的海洋附着细菌对厚壳贻贝附着的影响[J].大连海洋大学学报, 2015,30(1):30-35.
[4] SHIKUMA N J, PILHOFER M, WEISS G L, et al. Marine tubeworm metamorphosis induced by arrays of bacterial phage tail-like structures[J]. Science, 2014, 343(6170):529-533.
[5] TAIT K, HAVENHAND J. Investigating a possible role for the bacterial signal molecules N-acylhomoserine lactones in Balanus improvisus cyprid settlement[J]. Molecular Ecology, 2013, 22(9):2588-2602.
[6] LEE J W, NAM J H, KIM Y H, et al. Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces[J]. The Journal of Microbiology, 2008,46(2):174-182.
[7] QIAN P Y, LAU S C K, DAHMS H U, et al. Marine biofilms as mediators of colonization by marine macroorganisms:implications for antifouling and aquaculture[J].Marine Biotechnology, 2007, 9(4):399-410.
[8] DOBRETSOV S, RITTSCHOF D. Love at first taste:induction of larval settlement by marine microbes[J]. International Journal of Molecular Sciences, 2020, 21(3):731.
[9] LEE O O, CHUNG H C, YANG J, et al. Molecular techniques revealed highly diverse microbial communities in natural marine biofilms on polystyrene dishes for invertebrate larval settlement[J]. Microbial Ecology, 2014,68(1):81-93.
[10] LIANG X, PENG L H, ZHANG S, et al. Polyurethane,epoxy resin and polydimethylsiloxane altered biofilm formation and mussel settlement[J]. Chemosphere, 2019,218:599-608.
[11] 刘倩倩,史宏伟,郭长禄,等.海鞘附着相关微生物膜中细菌原核群落结构解析[J].生物技术通报, 2020,36(11):76-84.
[12] SUN Y, LANG Y, PAN Y, et al. Colonization characteristics of pioneer surface-associated eukaryotes during natural biofilm formation on PDMS-based composites via 18S rRNA gene sequencing methods[J]. International Biodeterioration&Biodegradation, 2022, 166:105341.
[13] 石建高,余雯雯,赵奎,等.海水网箱网衣防污技术的研究进展[J].水产学报, 2021, 45(3):472-485.
[14] 王越,张敏,石建高,等.渔用防污材料的研究进展及其在渔业上的应用[J].海洋渔业, 2021, 43(2):247-256.
[15] 黄宗国,林茂.中国海洋生物图集-第四册, 2-动物界[M].北京:海洋出版社, 2012.
[16] 刘勐伶,严涛.南海污损生物生态研究进展[J].海洋通报, 2006, 25(1):84-91.
[17] 陈明华,谢良国,付志强,等.丙酮法和热乙醇法测定浮游植物叶绿素a的方法比对[J].环境监测管理与技术, 2016, 28(2):46-48.
[18] ZHANG B, YANG X, LIU L, et al. Spatial and seasonal variations in biofilm formation on microplastics in coastal waters[J]. The Science of the Total Environment, 2021,770:145303.
[19] SALTA M, WHARTON J A, BLACHE Y, et al. Marine biofilms on artificial surfaces:structure and dynamics[J].Environmental Microbiology, 2013, 15(11):2879-2893.
[20] VON AMMON U, WOOD S A, LAROCHE O, et al. The impact of artificial surfaces on marine bacterial and eukaryotic biofouling assemblages:a high-throughput sequencing analysis[J]. Marine Environmental Research,2018, 133:57-66.
[21] JOUUCHI T, SATUITO C G, KITAMURA H. Sugar compound products of the periphytic diatom Navicula ramosissima induce larval settlement in the barnacle,Amphibalanus amphitrite[J]. Marine Biology, 2007,152(5):1065-1076.
[22] QIAN P Y, CHENG A, WANG R, et al. Marine biofilms:diversity, interactions and biofouling[J]. Nature Reviews Microbiology, 2022, 20:671-684.
[23] JIN C, QIU J, YU S, et al. Histamine promotes the larval metamorphic competence of barnacle Amphibalanus amphitrite[J]. Marine Biology Research, 2014, 10(8):799-806.
[24] 张娜.纹藤壶幼虫发育与信号物质关系研究[D].扬州:扬州大学, 2018.
[25] SHI X, WANG Y Q, YANG Y M, et al. Knockdown of two iodothyronine deiodinase genes inhibits epinephrineinduced larval metamorphosis of the hard-shelled mussel Mytilus coruscus[J]. Frontiers in Marine Science, 2022,9:914283.
[26] LAGOS M E, WHITE C R, MARSHALL D J. Avoiding low-oxygen environments:oxytaxis as a mechanism of habitat selection in a marine invertebrate[J]. Marine Ecology Progress Series, 2015, 540:99-107.
[27] CHEUNG S G, CHAN C Y S, PO B H K, et al. Effects of hypoxia on biofilms and subsequently larval settlement of benthic invertebrates[J]. Marine Pollution Bulletin,2014, 85(2):418-424.
[28] DAHMS H U, DOBRETSOV S, QIAN P Y. The effect of bacterial and diatom biofilms on the settlement of the bryozoan Bugula neritina[J]. Journal of Experimental Marine Biology and Ecology, 2004, 313(1):191-209.
[29] DOBRETSOV S, QIAN P Y. Facilitation and inhibition of larval attachment of the bryozoan Bugula neritina in association with mono-species and multi-species biofilms[J].Journal of Experimental Marine Biology and Ecology,2006, 333(2):263-274.
[30] COYTE K Z, SCHLUTER J, FOSTER K R. The ecology of the microbiome:networks, competition, and stability[J].Science, 2015, 350(6261):663-666.
[31] STEELE J A, COUNTWAY P D, XIA L, et al. Marine bacterial, archaeal and protistan association networks reveal ecological linkages[J]. The ISME Journal, 2011,5(9):1414-1425.
[32] EILER A, HEINRICH F, BERTILSSON S. Coherent dynamics and association networks among lake bacterioplankton taxa[J]. The ISME Journal, 2012, 6(2):330-342.
[33] BANERJEE S, SCHLAEPPI K, VAN DER HEIJDEN M G A. Keystone taxa as drivers of microbiome structure and functioning[J]. Nature Reviews Microbiology, 2018,16:567-576.
[34] GORTER F A, MANHART M, ACKERMANN M. Understanding the evolution of interspecies interactions in microbial communities[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2020, 375(1798):20190256.
[35] CHIU J M Y, THIYAGARAJAN V, TSOI M M Y, et al.Qualitative and quantitative changes in marine biofilms as a function of temperature and salinity in summer and winter[J]. Biofilms, 2005, 2(3):183-195.