[1] MA X , FENG F , ZHANG Y, et al. A novel rice grain size gene OsSNB was identified by genome-wide association study in natural population [J]. PLoS Genetics, 2019, 15(5): e1008191. doi:  10.1371/journal.pgen.1008191
[2] HUANG L, LI Q, ZHANG C, et al. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system [J]. Plant Biotechnology Journal, 2020, 18(11): 2164 − 2166. doi:  10.1111/pbi.13391
[3] XU Y, LIN Q, LI X, et al. Fine-tuning the amylose content of rice by precise base editing of the Wx gene [J]. Plant Biotechnology Journal, 2021, 19(1): 11 − 13. doi:  10.1111/pbi.13433
[4] ZHANG A N, LIU Y, WANG F M, et al. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene [J]. Molecular Breeding, 2019, 39: 47 − 57. doi:  10.1007/s11032-019-0954-y
[5] LI C, LI W, ZHOU Z, et al. A new rice breeding method: CRISPR/Cas9 system editing of the Xa13 promoter to cultivate transgene-free bacterial blight-resistant rice [J]. Plant Biotechnology Journal, 2020, 18(2): 313 − 315. doi:  10.1111/pbi.13217
[6] WANG S L, KU S S, YE X G, et al. Current status of genetic transformation technology developed in cucumber (Cucumis sativus L. ) [J]. Journal of Integrative Agriculture, 2015, 14(3): 469 − 482. doi:  10.1016/S2095-3119(14)60899-6
[7] WANG Y P, CHENG X, SHAN Q W, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew [J]. Nature Biotechnology, 2014, 32: 947 − 951. doi:  10.1038/nbt.2969
[8] DONG O X, YU S, JAIN R, et al. Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9 [J]. Nature Communications, 2020, 11(1): 1178. doi:  10.1038/s41467-020-14981-y
[9] YUSTE-LISBONA F J,FERNÁNDEZ-LOZANO A, PINEDA B, et al. ENO regulates tomato fruit size through the floral meristem development network [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(14): 8187 − 8195.
[10] 王文英, 刘喜存, 郭春江, 等. 影响瓜类作物未授粉子房或胚珠离体培养技术的几个因素[J]. 蔬菜, 2020(7): 24 − 27.
[11] BARTON M K. Twenty years on: the inner workings of the shoot apical meristem, a developmental dynamo [J]. Developmental Biology, 2010, 341(1): 95 − 113. doi:  10.1016/j.ydbio.2009.11.029
[12] MENDEZ-HERMANDEZ H A, LEDEZMA-RODRIGUEZ M, AVILEZ-MONTALVO R N, et al. Signaling overview of plant somatic embryogenesis [J]. Frontiers in Plant Science, 2019, 10: 77. doi:  10.3389/fpls.2019.00077
[13] OMIDBAKHSHFARD M A, PROOST S, FUJIKURA U, MUELLER-ROEBER B. Growth-Regulating Factors (GRFs): A small transcription Factor Family with Important Functions in Plant Biology [J]. Molecular Plant, 2015, 8(7): 998 − 1010.
[14] ZHANG X Y, XU G C, CHENG C H, et al. Establishment of an Agrobacterium-mediated genetic transformation and CRISPR/Cas9-mediated targeted mutagenesis in Hemp (Cannabis Sativa L. ) [J]. Plant Biotechnology Journal, 2021, 19(10): 1979 − 1987. doi:  10.1111/pbi.13611
[15] PAN W B, CHENG Z T, HAN Z G, et al. Efficient genetic transformation and CRISPR/Cas9-mediated genome editing of watermelon assisted by genes encoding developmental regulators [J]. Journal of Zhejiang University-Science B(Biomedicine & Biotechnology), 2022,23(4): 339-344.
[16] MAHER M F, NASTI R A, VOLLBRECHT M, et al. Plant gene editing through de novo induction of meristems [J]. Nat Biotechnol, 2020, 38(1): 84 − 89. doi:  10.1038/s41587-019-0337-2
[17] LIAN Z, NGUYEN C D, LIU L, et al. Application of developmental regulators to improve in planta or in vitro transformation in plants [J]. Plant Biotechnol J, 2022, 20(8): 1622 − 1635. doi:  10.1111/pbi.13837
[18] 李坤坤, 徐昌杰. 蔷薇科果树离体再生与遗传转化研究进展[J]. 园艺学报, 2017, 44(9): 1633 − 1644. doi:  10.16420/j.issn.0513-353x.2017-0104
[19] KARMAKAR S, ALI MOLLA K, GAYEN D, et al. Development of a rapid and highly efficient Agrobacterium-mediated transformation system for pigeon pea [Cajanus cajan (L. ) Millsp] [J]. GM Crops Food, 2019, 10(2): 115 − 138. doi:  10.1080/21645698.2019.1625653
[20] 穆丁郁, 张卫华. 瓜类蔬菜组织培养研究综述[J]. 现代农业科技, 2020(21): 81 − 84. doi:  10.3969/j.issn.1007-5739.2020.21.032