[1] |
DARCY J L, SWIFT S O I, COBIAN G M, et al. Fungal communities living within leaves of native Hawaiian dicots are structured by landscape-scale variables as well as by host plants[J]. Molecular Ecology, 2020, 29(16): 3103 − 3116. |
[2] |
ARNOLD A E, MEJÍA L C, KYLLO D, et al. Fungal endophytes limit pathogen damage in a tropical tree[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(26): 15649 − 15654. doi: 10.1073/pnas.2533483100 |
[3] |
BUSBY P E, PEAY K G, NEWCOMBE G. Common foliar fungi of Populus trichocarpa modify Melampsora rust disease severity[J]. The New Phytologist, 2016, 209(4): 1681 − 1692. doi: 10.1111/nph.13742 |
[4] |
KHAN A L, AL-HARRASI A, AL-RAWAHI A, et al. Endophytic fungi from frankincense tree improves host growth and produces extracellular enzymes and indole acetic acid[J]. PLoS One, 2016, 11(6): e0158207. doi: 10.1371/journal.pone.0158207 |
[5] |
GRABKA R, D'ENTREMONT T W, ADAMS S J, et al. Fungal endophytes and their role in agricultural plant protection against pests and pathogens[J]. Plants, 2022, 11(3): 384. |
[6] |
ARNOLD A E, MAYNARD Z, GILBERT G S. Fungal endophytes in dicotyledonous neotropical trees: patterns of abundance and diversity[J]. Mycological Research, 2001, 105(12): 1502 − 1507. doi: 10.1017/S0953756201004956 |
[7] |
LIU J, ZHAO J, WANG G, et al. Host identity and phylogeny shape the foliar endophytic fungal assemblages of Ficus [J]. Ecology and Evolution, 2019, 9(18): 10472 − 10482. doi: 10.1002/ece3.5568 |
[8] |
SMITH S E, READ D J. Mycorrhizal Symbiosis. 3rd Edition[M]. London: Academic Press, 2008 |
[9] |
TEDERSOO L, BAHRAM M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes[J]. Biological Reviews, 2019, 94(5): 1857 − 1880. doi: 10.1111/brv.12538 |
[10] |
ESCHEN R, HUNT S, MYKURA C, et al. The foliar endophytic fungal community composition in Cirsium arvense is affected by mycorrhizal colonization and soil nutrient content[J]. Fungal Biology, 2010, 114(11/12): 991 − 998. doi: 10.1016/j.funbio.2010.09.009 |
[11] |
RAZAK N A, GANGE A C. Multitrophic interactions between arbuscular mycorrhizal fungi, foliar endophytic fungi and aphids[J]. Microbial Ecology, 2023, 85(1): 146 − 156. doi: 10.1007/s00248-021-01937-y |
[12] |
方精云, 李意德, 朱彪, 等. 海南岛尖峰岭山地雨林的群落结构、物种多样性以及在世界雨林中的地位[J]. 生物多样性, 2004, 12(1): 29 − 43. doi: 10.3321/j.issn:1005-0094.2004.01.005 |
[13] |
许涵, 李意德, 林明献, 等. 海南尖峰岭热带山地雨林 60 ha 动态监测样地群落结构特征[J]. 生物多样性, 2015, 23(2): 192 − 201. doi: 10.17520/biods.2014157 |
[14] |
杨思琪, 张琪, 宋希强, 等. 尖峰岭热带山地雨林根部真菌—植物互作网络结构特征[J]. 生物多样性, 2019, 27(3): 314 − 326. doi: 10.17520/biods.2018339 |
[15] |
ZHOU H W, LI D F, TAM N F Y, et al. BIPES, a cost-effective high-throughput method for assessing microbial diversity[J]. The ISME Journal, 2011, 5(4): 741 − 749. doi: 10.1038/ismej.2010.160 |
[16] |
李艳朋, 许涵, 李意德, 等. 海南尖峰岭热带山地雨林物种多样性空间分布格局的尺度效应[J]. 植物生态学报, 2016, 40(9): 861 − 870. doi: 10.17521/cjpe.2015.0400 |
[17] |
CORNELISSEN J H C, LAVOREL S, GARNIER E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2003, 51(4): 335. doi: 10.1071/BT02124 |
[18] |
WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985): 821 − 827. doi: 10.1038/nature02403 |
[19] |
CREGGER M A, VEACH A M, YANG Z K, et al. The Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome[J]. Microbiome, 2018, 6(1): 31. doi: 10.1186/s40168-018-0413-8 |
[20] |
YAO H, SUN X, HE C, et al. Phyllosphere epiphytic and endophytic fungal community and network structures differ in a tropical mangrove ecosystem[J]. Microbiome, 2019, 7(1): 57. doi: 10.1186/s40168-019-0671-0 |
[21] |
QIAN X, LI H, WANG Y, et al. Leaf and root endospheres harbor lower fungal diversity and less complex fungal co-occurrence patterns than rhizosphere[J]. Frontiers in Microbiology, 2019, 10: 1015. doi: 10.3389/fmicb.2019.01015 |
[22] |
GONZÁLEZ-TEUBER M, VILO C, GUEVARA-ARAYA M J, et al. Leaf resistance traits influence endophytic fungi colonization and community composition in a South American temperate rainforest[J]. Journal of Ecology, 2020, 108(3): 1019 − 1029. |
[23] |
THOMAS D, VANDEGRIFT R, ROY B A, et al. Spatial patterns of fungal endophytes in a subtropical montane rainforest of northern Taiwan[J]. Fungal Ecology, 2019, 39: 316 − 327. doi: 10.1016/j.funeco.2018.12.012 |
[24] |
GONZÁLEZ-TEUBER M. The defensive role of foliar endophytic fungi for a South American tree[J]. AoB PLANTS, 2016, 8: plw050. doi: 10.1093/aobpla/plw050 |
[25] |
TELLEZ P H, WOODS C L, FORMEL S, et al. Relationships between foliar fungal endophyte communities and ecophysiological traits of CAM and C3 epiphytic bromeliads in a neotropical rainforest[J]. Diversity, 2020, 12(10): 378. doi: 10.3390/d12100378 |
[26] |
SHAHRTASH M, BROWN S P. Drivers of foliar fungal endophytic communities of kudzu (Pueraria montana var. lobata) in the southeast United States[J]. Diversity, 2020, 12(5): 185. doi: 10.3390/d12050185 |
[27] |
KEMBEL S W, MUELLER R C. Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities[J]. Botany, 2014, 92(4): 303 − 311. doi: 10.1139/cjb-2013-0194 |
[28] |
EGIDI E, DE HOOG G S, ISOLA D, et al. Phylogeny and taxonomy of meristematic rock-inhabiting black fungi in the Dothideomycetes based on multi-locus phylogenies[J]. Fungal Diversity, 2014, 65(1): 127 − 165. doi: 10.1007/s13225-013-0277-y |
[29] |
GEISER D M, GUEIDAN C, MIADLIKOWSKA J, et al. Eurotiomycetes: Eurotiomycetidae and Chaetothyriomycetidae[J]. Mycologia, 2006, 98(6): 1053 − 1064. doi: 10.1080/15572536.2006.11832633 |
[30] |
U' REN J M, MIADLIKOWSKA J, ZIMMERMAN N B, et al. Contributions of North American endophytes to the phylogeny, ecology, and taxonomy of Xylariaceae (sordariomycetes, ascomycota)[J]. Molecular Phylogeneticus and Evolution, 2016, 98: 210 − 232. doi: 10.1016/j.ympev.2016.02.010 |
[31] |
VORHOLT J A. Microbial life in the phyllosphere[J]. Nature Reviews Microbiology, 2012, 10(12): 828 − 840. doi: 10.1038/nrmicro2910 |
[32] |
STONE B W G, JACKSON C R. Seasonal patterns contribute more towards phyllosphere bacterial community structure than short-term perturbations[J]. Microbial Ecology, 2021, 81(1): 146 − 156. doi: 10.1007/s00248-020-01564-z |
[33] |
VINCENT J B, WEIBLEN G D, MAY G. Host associations and beta diversity of fungal endophyte communities in New Guinea rainforest trees[J]. Molecular Ecology, 2016, 25(3): 825 − 841. doi: 10.1111/mec.13510 |
[34] |
TELLEZ PH. Tropical plants and fungal symbionts leaf functional traits as drivers of plant-fungal interactions (Doctoral dissertation) [D]. Department of Ecology and Evolutionary Biology, Tulane University, 2019. |
[35] |
KEMBEL S W, O'CONNOR T K, ARNOLD H K, et al. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(38): 13715 − 13720. doi: 10.1073/pnas.1216057111 |
[36] |
DONALD J, ROY M, SUESCUN U, et al. A test of community assembly rules using foliar endophytes from a tropical forest canopy[J]. Journal of Ecology, 2020, 108(4): 1605 − 1616. |
[37] |
WHITE P J, BROADLEY M R. Calcium in plants[J]. Annals of Botany, 2003, 92(4): 487 − 511. doi: 10.1093/aob/mcg164 |
[38] |
HEPLER P K, WINSHIP L J. Calcium at the cell wall-cytoplast interface[J]. Journal of Integrative Plant Biology, 2010, 52(2): 147 − 160. doi: 10.1111/j.1744-7909.2010.00923.x |
[39] |
UNDERWOOD W. The plant cell wall: a dynamic barrier against pathogen invasion.[J]. Frontiers in Plant Science, 2012, 3: 85. |
[40] |
JOHNSON R, VISHWAKARMA K, HOSSEN M S, et al. Potassium in plants: growth regulation, signaling, and environmental stress tolerance[J]. Plant Physiology and Biochemistry, 2022, 172: 56 − 69. doi: 10.1016/j.plaphy.2022.01.001 |