[1] 罗兴录, 黄小凤, 吴美艳, 等. 5个木薯品种生理特性与主要农艺性状的研究[J]. 作物杂志, 2020(5): 182 − 187.
[2] 罗兴录, 潘晓璐, 朱艳梅. 木薯内源ABA含量与块根淀粉积累关系研究[J]. 热带作物学报, 2018, 39(3): 472 − 479. doi:  10.3969/j.issn.1000-2561.2018.03.011
[3] TOMLINSON K R, BAILEY A M, ALICAI T, et al. Cassava brown streak disease: historical timeline, current knowledge and future prospects [J]. Molecular Plant Pathology, 2018, 19(5): 1282 − 1294. doi:  10.1111/mpp.12613
[4] SHEFFIELD J, TAYLOR N, FAUQUET C, et al. The cassava (Manihot esculenta Crantz) root proteome: protein identification and differential expression [J]. Proteomics, 2010, 6(5): 1588 − 1598.
[5] NACONSIE M, LERTPANYASAMPATHA M, VIBOONJUN U, et al. Cassava root membrane proteome reveals activities during storage root maturation [J]. Journal of Plant Research, 2016, 129(1): 51 − 65. doi:  10.1007/s10265-015-0761-4
[6] EL-SHARKAWY M A. Cassava biology and physiology [J]. Plant Molecular Biology, 2004, 56(4): 481 − 501. doi:  10.1007/s11103-005-2270-7
[7] NASSAR N M A, GRACIANO-RIBEIRO D, FERNANDES S D C, et al. Anatomical alterations due to polyploidy in cassava, Manihot esculenta Crantz [J]. Genetics and Molecular Research, 2008, 7(2): 276 − 283. doi:  10.4238/vol7-2gmr399
[8] BREDESON J V, LYONS J B, PROCHNIK S E, et al. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity [J]. Nature Biotechnology, 2016, 34(5): 562 − 570. doi:  10.1038/nbt.3535
[9] 赖杭桂, 庄南生. 木薯多倍体育种研究进展[J]. 热带生物学报, 2010, 1(4): 380 − 385.
[10] BARBA-GONZALEZ R, LIM K B, RAMANNA M S, et al. Use of 2n gametes for inducing intergenomic recombination in lily hybrids [J]. Acta Horticulturae, 2005(673): 161 − 166.
[11] LIM K B, RAMANNA M S, VAN TUYL J M. Homoeologus recombination in interspecific hybrids of Lilium [J]. Korean Journal of Breeding, 2003, 35(1): 8 − 12.
[12] LAI H, CHEN X, CHEN Z, et al. Induction of female 2n gametes and creation of tetraploids through sexual hybridization in cassava (Manihot esculenta) [J]. Euphytica, 2015, 201(2): 265 − 273. doi:  10.1007/s10681-014-1207-0
[13] AN F, FAN J, LI J, et al. Comparison of leaf proteomes of cassava (Manihot esculenta Crantz) cultivar NZ199 diploid and autotetraploid genotypes [J]. Plos One, 2014, 9(4): e85991. doi:  10.1371/journal.pone.0085991
[14] LEHESRANTA S J, DAVIES H V, SHEPHERD L V T, et al. Comparison of tuber proteomes of potato varieties, landraces, and genetically modified lines [J]. Plant Physiology, 2005, 138(3): 1690 − 1699. doi:  10.1104/pp.105.060152
[15] CARPENTIER S, PANIS B, RENAUT J, et al. The use of 2D-electrophoresis and de novo sequencing to characterize inter- and intra-cultivar protein polymorphisms in an allopolyploid crop [J]. Phytochemistry, 2011, 72(10): 1243 − 1250. doi:  10.1016/j.phytochem.2010.10.016
[16] HOEHENWARTER W, LARHLIMI A, HUMMEL J, et al. MAPA distinguishes genotype-specific variability of highly similar regulatory protein isoforms in potato tuber [J]. Journal of Proteome Research, 2011, 10(7): 2979 − 2991. doi:  10.1021/pr101109a
[17] HU G, KOH J, YOO M, et al. Gene-expression novelty in allopolyploid cotton: A proteomic perspective [J]. Genetics, 2015, 200(1): 91 − 104. doi:  10.1534/genetics.115.174367
[18] AMIOUR N, MERLINO M, LEROY P, et al. Chromosome mapping and identification of amphiphilic proteins of hexaploid wheat kernels [J]. Theoretical and Applied Genetics, 2003, 108(1): 62 − 72. doi:  10.1007/s00122-003-1411-0
[19] MERLINO M, LEROY P, CHAMBON C, et al. Mapping and proteomic analysis of albumin and globulin proteins in hexaploid wheat kernels (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2009, 118(7): 1321 − 1337. doi:  10.1007/s00122-009-0983-8
[20] YIN Z K, STEAD D, WALKER J, et al. A proteomic analysis of the salt, cadmium and peroxide stress responses in Candida albicans and the role of the Hog1 stress-activated MAPK in regulating the stress-induced proteome. [J]. Proteomics, 2009, 9(20): 4686. doi:  10.1002/pmic.200800958
[21] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
[22] 王学奎. 植物生理生化实验原理和技术[M]. 北京, 高等教育出版社, 2006.
[23] CHEN S, GLAZER I, GOLLOP N, et al. Proteomic analysis of the entomopathogenic nematode Steinernema feltiae IS-6 IJs under evaporative and osmotic stresses. [J]. Molecular and Biochemical Parasitology, 2006, 145(2): 195 − 204. doi:  10.1016/j.molbiopara.2005.10.003
[24] 安飞飞, 凡杰, 李庚虎, 等. 华南8号木薯及其四倍体诱导株系叶片蛋白质组及叶绿素荧光差异分析[J]. 中国农业科学, 2013, 46(19): 3978 − 3987. doi:  10.3864/j.issn.0578-1752.2013.19.003
[25] KHAN S, AHMAD K, ALSHAMMARI E M A, et al. Implication of caspase-3 as a common therapeut target for multineurodegenerative disorders and its inhibition using nonpeptidyl natural compounds [J]. BioMed Res Int, 2015, 175(2): 235 − 244.
[26] YANG C, ZHAO L, ZHANG H, et al. Evolution of physiological responses to salt stress in hexaploid wheat [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(32): 11882 − 11887. doi:  10.1073/pnas.1412839111
[27] COATE J E, POWELL A F, OWENS T G, et al. Transgressive physiological and transcriptomic responses to light stress in allopolyploid Glycine dolichocarpa (Leguminosae) [J]. Heredity, 2013, 110(2): 160 − 170. doi:  10.1038/hdy.2012.77
[28] DENG B, DU W, LIU C, et al. Antioxidant response to drought, cold and nutrient stress in two ploidy levels of tobacco plants: low resource requirement confers polytolerance in polyploids? [J]. Plant Growth Regulation, 2012, 66(1): 37 − 47. doi:  10.1007/s10725-011-9626-6
[29] PHLUP T, GOVLNDALAH, SENGUPTA K, et al. Anatomical nature of resistance in mulberry genotypes against Cerotelium lid causing leaf rust [J]. Indian Phytopathology, 1991, 44(2): 249 − 251.
[30] SHAN Z Y, LUO X L, WEI M G, et al. Physiological and proteomic analysis on long-term drought resistance of cassava (Manihot esculenta Crantz) [J]. Scientific Reports, 2018, 8(1): 17982. doi:  10.1038/s41598-018-35711-x
[31] GONG D H, WANG G Z, SI W T, et al. Effects of salt stress on photosynthetic pigments and activity of ribulose-1, 5-bisphosphate carboxylase/oxygenase in Kalidium foliatum [J]. Russian Journal of Plant Physiology, 2018, 65(1): 98 − 103. doi:  10.1134/S1021443718010144
[32] GUETADAHAN Y, YANIV Z, ZILINSKAS B A, et al. Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in Citrus [J]. Planta, 1997, 203(4): 460 − 469. doi:  10.1007/s004250050215
[33] KHOYERDI F F, SHAMSHIRI M H, ESTAJI A, et al. Changes in some physiological and osmotic parameters of several pistachio genotypes under drought stress [J]. Scientia Horticulturae, 2016, 198: 44 − 51. doi:  10.1016/j.scienta.2015.11.028
[34] CARDOSO M N, APARECIDA GOMES DE ARAÚJO, OLIVEIRA L A R, et al. Proline synthesis and physiological response of cassava genotypes under in vitro salinity [J]. Ciência Rural, 2019, 49(6): e20170715.
[35] 刘维俊, 徐立新, 何美丹, 等. 干旱胁迫下山栏稻与栽培水稻品种苗期表型性状及生理差异[J]. 热带生物学报, 2014, 5(3): 260 − 264.
[36] PARRY M A, ANDRALOJC P J, SCALES J C, et al. Rubisco activity and regulation as targets for crop improvement [J]. Journal of Experimental Botany, 2013, 64(3): 717 − 730. doi:  10.1093/jxb/ers336
[37] KUREPA J, SMALLE J A. Oxidative stress-induced formation of covalently linked ribulose-1, 5-bisphosphate carboxylase/oxygenase large subunit dimer in tobacco plants [J]. BMC Research Notes, 2019, 12(1): 112. doi:  10.1186/s13104-019-4153-z
[38] LI J, YOKOSHO K, LIAO H, et al. Diel magnesium fluctuations in chloroplasts contribute to photosynthesis in rice [J]. Nature Plants, 2020, 6(7): 1 − 12.
[39] LONG S P, MARSHALLCOLON A, ZHU X, et al. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential [J]. Cell, 2015, 161(1): 56 − 66. doi:  10.1016/j.cell.2015.03.019
[40] VINCENT D, ERGUL A, BOHLMAN M C, et al. Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity [J]. Journal of Experimental Botany, 2007, 58(7): 1873 − 1892. doi:  10.1093/jxb/erm012
[41] PANKOVIC D, SAKAC Z, KEVRESAN S, et al. Acclimation to long-term water deficit in the leaves of two sunflower hybrids: photosynthesis, electron transport and carbon metabolism [J]. Journal of Experimental Botany, 1999, 50: 127 − 138. doi:  10.1093/jexbot/50.330.127
[42] TEZARA W, MITCHELL V J, DRISCOLL S D, et al. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP [J]. Nature, 1999, 401: 914 − 917. doi:  10.1038/44842
[43] PARKER R, FLOWERS T J, MOORE A L, et al. An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina [J]. Journal of Experimental Botany, 2006, 57(5): 1109 − 1118. doi:  10.1093/jxb/erj134
[44] WASSIM A, ICHRAK B R, SAIDA A, et al. Putative role of proteins involved in detoxification of reactive oxygen species in the early response to gravitropic stimulation of poplar stems [J]. Plant Signaling & Behavior, 2013, 8(1): e22411.
[45] DOWNTON W J, LOVEYS B R, GRANT W J, et al. Non-uniform stomatal closure induced by water stress causes putative non-stomatal inhibition of photosynthesis [J]. New Phytologist, 1988, 110(4): 503 − 509. doi:  10.1111/j.1469-8137.1988.tb00289.x