[1] Khan L U, Zhao R B, Wang H X, et al. Recent advances of the causal agent of yellow leaf disease (YLD) on areca palm (Areca catechu L. ) [J]. Tropical Plants, 2023, 2(1): 7. https://doi.org/10.48130/TP-2023-0007 doi:  10.48130/TP-2023-0007
[2] 申丹艳, 邱苏晗, 林子情, 等. 海南省槟榔种植成本收益分析及产业发展建议[J]. 热带农业科技, 2025, 48(1): 58−63. https://doi.org/10.16005/j.cnki.tast.2025.01.011 doi:  10.16005/j.cnki.tast.2025.01.011
[3] 葛慧远, 孟秀利, 林兆威, 等. 中国“槟榔黄化病”研究40年: 刍议制约科研进展的几个关键问题[C]//中国植物病理学会. 中国植物病理学会2024年学术年会论文集. 长春: 中国植物病理学会, 2024: 371. https://doi.org/10.26914/c.cnkihy.2024.022571
[4] Wang H X, Zhao R B, Zhang H W, et al. Prevalence of yellow leaf disease (YLD) and its associated areca palm velarivirus 1 (APV1) in betel palm (Areca catechu) plantations in Hainan, China [J]. Plant Disease, 2020, 104(10): 2556−2562. https://doi.org/10.1094/PDIS-01-20-0140-RE doi:  10.1094/PDIS-01-20-0140-RE
[5] Zhang H W, Zhao X, Cao X M, et al. Transmission of areca palm Velarivirus 1 by mealybugs causes yellow leaf disease in betel palm (Areca catechu) [J]. Phytopathology, 2022, 112(3): 700−707. https://doi.org/10.1094/PHYTO-06-21-0261-R doi:  10.1094/PHYTO-06-21-0261-R
[6] Zhao X, Zhao R B, Cao X M, et al. Transmission of areca palm Velarivirus 1 (APV1) by Pseudococcus cryptus [J]. Phytopathology Research, 2024, 6(1): 10. https://doi.org/10.1186/s42483-024-00228-x doi:  10.1186/s42483-024-00228-x
[7] Yu H M, Qi S S, Chang Z X, et al. Complete genome sequence of a novel Velarivirus infecting areca palm in China [J]. Archives of Virology, 2015, 160(9): 2367−2370. https://doi.org/10.1007/s00705-015-2489-9 doi:  10.1007/s00705-015-2489-9
[8] Agranovsky A A. Closteroviruses: molecular biology, evolution and interactions with cells [C]//GAUR R K, PETROV N M, PATIL B L, et al. Plant Viruses: Evolution and Management. Singapore: Springer, 2016: 231-252. https://doi.org/10.1007/978-981-10-1406-2_14
[9] Fuchs M, Bar-Joseph M, Candresse T, et al. ICTV virus taxonomy profile: Closteroviridae [J]. Journal of General Virology, 2020, 101(4): 364−365. https://doi.org/10.1099/jgv.0.001397 doi:  10.1099/jgv.0.001397
[10] Cao X M, Zhao R B, Wang H X, et al. Genomic diversity of areca palm Velarivirus 1 (APV1) in areca palm (Areca catechu) plantations in Hainan, China [J]. BMC Genomics, 2021, 22(1): 725. https://doi.org/10.1186/s12864-021-07976-6 doi:  10.1186/s12864-021-07976-6
[11] 邢增宇, 赵瑞白, 曹先梅, 等. 槟榔黄叶病毒1外壳蛋白的互作蛋白筛选[J]. 分子植物育种, 2024, 22(12): 3912−3921. https://doi.org/10.13271/j.mpb.022.003912 doi:  10.13271/j.mpb.022.003912
[12] Csorba T, Kontra L, Burgyán J. Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence [J]. Virology, 2015, 479/480: 85-103. https://doi.org/10.1016/j.virol.2015.02.028
[13] Lu R, Folimonov A, Shintaku M, et al. Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(44): 15742−15747. https://doi.org/10.1073/pnas.0404940101 doi:  10.1073/pnas.0404940101
[14] Costâ A, Martins T, Marques N, et al. Combined expression of p20 and p23 proteins from citrus Tristeza virus show enhanced local silencing suppressor activity [J]. Phytopathologia Mediterranea, 2016, 55(2): 172−183. https://doi.org/10.14601/Phytopathol_Mediterr-16093 doi:  10.14601/Phytopathol_Mediterr-16093
[15] Dey K K, Borth W B, Melzer M J, et al. Analysis of pineapple mealybug wilt associated virus -1 and -2 for potential RNA silencing suppressors and pathogenicity factors [J]. Viruses, 2015, 7(3): 969−995. https://doi.org/10.3390/v7030969 doi:  10.3390/v7030969
[16] 赵瑞白. 槟榔黄化相关病毒(APV1)侵染性克隆构建[D]. 海口: 海南大学, 2022. https://doi.org/10.27073/d.cnki.ghadu.2022.001146
[17] Fields S, Song O K. A novel genetic system to detect protein-protein interactions [J]. Nature, 1989, 340(6230): 245−246. https://doi.org/10.1038/340245a0 doi:  10.1038/340245a0
[18] Jiang L L, Lu Y W, Zheng X Y, et al. The plant protein NbP3IP directs degradation of Rice stripe virus p3 silencing suppressor protein to limit virus infection through interaction with the autophagy-related protein NbATG8 [J]. New Phytologist, 2021, 229(2): 1036−1051. https://doi.org/10.1111/nph.16917 doi:  10.1111/nph.16917
[19] 余婧, 杨慧, 余世洲, 等. 烟草NtCBT基因启动子酵母单杂诱饵载体构建及互作蛋白筛选[J]. 生物技术通报, 2022, 38(10): 73−79. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2021-1597 doi:  10.13560/j.cnki.biotech.bull.1985.2021-1597
[20] Hamera S, Yan Y, Song X G, et al. Expression of cucumber mosaic virus suppressor 2b alters FWA methylation and its siRNA accumulation in Arabidopsis thaliana [J]. Biology Open, 2016, 5(11): 1727−1734. https://doi.org/10.1242/bio.017244 doi:  10.1242/bio.017244
[21] 林敏燕. 拟南芥小GTP结合蛋白RABE1C参与植物干旱胁迫机制研究[D]. 济南: 山东大学, 2017. https://doi.org/10.27272/d.cnki.gshdu.2017.000041
[22] 钟晨. 铁胁迫对‘砀山酥梨’叶片矿质营养及相关基因表达的影响[D]. 合肥: 安徽农业大学, 2013.
[23] Barajas D, Xu K, De Castro Martín I F, et al. Co-opted oxysterol-binding ORP and VAP proteins channel sterols to RNA virus replication sites via membrane contact sites [J]. PLoS Pathogens, 2014, 10(10): e1004388. https://doi.org/10.1371/journal.ppat.1004388 doi:  10.1371/journal.ppat.1004388
[24] Zheng L J, Zhang C, Shi C N, et al. Rice stripe virus NS3 protein regulates primary miRNA processing through association with the miRNA biogenesis factor OsDRB1 and facilitates virus infection in rice [J]. PLoS Pathogens, 2017, 13(10): e1006662. https://doi.org/10.1371/journal.ppat.1006662 doi:  10.1371/journal.ppat.1006662
[25] Liu Y, Clegg H V, Leslie P L, et al. CHCHD2 inhibits apoptosis by interacting with Bcl-x L to regulate Bax activation [J]. Cell Death & Differentiation, 2015, 22(6): 1035−1046. https://doi.org/10.1038/cdd.2014.194 doi:  10.1038/cdd.2014.194
[26] 祝柳慧, 张歆悦, 朱洲海, 等. 卷曲螺旋结构域蛋白2通过促进线粒体自噬抑制帕金森病SH-SY5Y细胞凋亡[J]. 中国组织工程研究, 2025, 29(25): 5403−5413. https://doi.org/10.12307/2025.098 doi:  10.12307/2025.098
[27] Han K L, Zheng H Y, Yan D K, et al. Pepper mild mottle virus coat protein interacts with pepper chloroplast outer envelope membrane protein OMP24 to inhibit antiviral immunity in plants [J]. Horticulture Research, 2023, 10(5): uhad046. https://doi.org/10.1093/hr/uhad046 doi:  10.1093/hr/uhad046
[28] Pan Z X, Wang Y Q, Li F F, et al. A plant viral effector disrupts ALD1-OSB1 immunity module to suppress chloroplast defenses [J]. Journal of Integrative Plant Biology, 2025, 67(9): 2510−2524. https://doi.org/10.1111/jipb.13959 doi:  10.1111/jipb.13959