[1] ZHANG Y Z, MA J, LIANG S L, et al. A stacking ensemble algorithm for improving the biases of forest aboveground biomass estimations from multiple remotely sensed datasets [J]. GIScience & Remote Sensing, 2022, 59(1): 234 − 249.
[2] EBRU C F, SIRIN U. The changes related with altitudinal gradients and seasonal variation in the species composition of Carabidae (Coleoptera) in Turkmen Mountain (Eskisehir, Turkey) [J]. Ekoloji., 2016, 25(98): 17 − 24.
[3] 李林, 魏识广, 练琚愉, 等. 亚热带不同纬度植物群落物种多样性分布规律[J]. 生态学报, 2020, 40(4): 1249 − 1257.
[4] HUSTON M. Biological diversity: the coexistence of species on changing landscape [J]. Journal of the Marine Biological Association of the United Kingdom, 1994, 75(1): 261 − 261.
[5] COATES M. A comparison of intertidal assemblages on exposed and sheltered tropical and temperate rocky shores [J]. Global Ecology Biogeography., 1998, 7(2): 115 − 125. doi:  10.2307/2997814
[6] UYSAL H, UNVER S, KIZILET H. The effects of neonicotinoids on the longevity of the male and female populations of Drosophila melanogaster [J]. Ekoloji., 2015, 24(96): 57 − 63.
[7] GASTON K J. Global patterns in biodiversity [J]. Nature, 2000(405): 220 − 227.
[8] RICKLEFS R E, HE F. Region effects influence local tree species diversity [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016(113): 674 − 679.
[9] KINLOCK N L, PROWANT L, HERSTOFF E M, et al. Explaining global variation in the latitudinal diversity gradients: meta-analysis confirms known patterns and uncovers new ones [J]. Global Ecology Biogeography, 2018(27): 125 − 141.
[10] VOLKOV I, BANAVAR J R, HE F, et al. Density dependence explains tree species abundance and diversity in tropical forests [J]. Nature, 2005(438): 658 − 661.
[11] HUBBELL S P. Neutral theory and the evolution of ecological equivalence [J]. Ecology, 2006(87): 1387 − 1398.
[12] ROSINDELL J, CORNELL S J. Species-area curves, neutral models, and long-distance dispersal [J]. Ecology, 2009(90): 1743 − 1750.
[13] FURNISS T J, LARSON A J, LUTZ J A. Reconciling niches and neutrality in a subalpine temperate forest [J]. Ecosphere, 2017, 8(6): e01847.
[14] 姜隽. 生物群落的物种多样性研究综述[J]. 科技情报开发与经济, 2009, 19(27): 131 − 133.
[15] 李巧, 涂璟, 熊忠平, 等. 物种多度格局研究概况物种多度格局研究概况[J]. 云南农业大学学报, 2011, 26(1): 117 − 123.
[16] MI Z. Climatic dynamics of broadleaved Korean pine forest in Changbai Mountain during the last 22 Years [J]. Chinese Journal of Ecology, 2005(24): 1007 − 1012.
[17] 张姗, 蔺菲, 原作强, 等. 长白山阔叶红松林草本层物种多度分布格局及其季节动态[J]. 生物多样性, 2015, 23(5): 641 − 648. doi:  10.17520/biods.2015089
[18] 胡正华, 于明坚, 丁炳扬, 等. 古田山国家级自然保护区常绿阔叶林类型及其群落物种多样性研究[J]. 应用与环境生物学报, 2003(4): 341 − 345. doi:  10.3321/j.issn:1006-687X.2003.04.003
[19] 祝燕, 赵谷风, 张俪文, 等. 古田山中亚热带常绿阔叶林动态监测样地——群落组成与结构[J]. 植物生态学报, 2008, 32(2): 262 − 273. doi:  10.3773/j.issn.1005-264x.2008.02.004
[20] 叶万辉, 曹洪麟, 黄忠良, 等. 鼎湖山南亚热带常绿阔叶林20公顷样地群落特征研究[J]. 植物生态学报, 2007, 32(2): 274 − 286.
[21] CAO M, ZOU X M, WANG M, et al. Tropical forests of Xishuangbanna, China [J]. Biotropica, 2006(38): 306 − 309.
[22] ZHU H. Forest vegetation of Xishuangbanna, south China [J]. Forestry Studies in China, 2006(2): 1 − 58.
[23] 兰国玉, 胡跃华, 曹敏, 等. 西双版纳热带森林动态监测样地——树种组成与空间分布格局[J]. 植物生态学报, 2008, 32(2): 287 − 298. doi:  10.3773/j.issn.1005-264x.2008.02.006
[24] 兰国玉, 朱华, 曹敏. 西双版纳热带季节雨林树种的区系组成成分分析[J]. 西北林学院学报, 2013, 28(1): 33 − 38. doi:  10.3969/j.issn.1001-7461.2013.01.06
[25] CONDIT R. The CTFS and the Standardization of Methodology [M]. Berlin: Springer-Verlag, 1998.
[26] 王世雄, 赵亮, 李娜, 等. 稀有种和常见种对植物群落物种丰富度格局的相对贡献[J]. 生物多样性, 2016, 24(6): 658 − 664. doi:  10.17520/biods.2015239
[27] 王世雄, 王孝安, 郭华, 等. 稀有种和常见种对黄土高原辽东栎群落物种多样性贡献的多尺度分析[J]. 生态学报, 2018, 38(22): 8060 − 8069.
[28] 张金屯. 植被数量生态学方法 [M]. 北京: 中国科技出版社, 1995.
[29] 谢晋阳, 陈灵芝. 中国暖温带若干灌丛群落多样性问题的研究[J]. 植物生态学报, 1997, 21(3): 197 − 207. doi:  10.3321/j.issn:1005-264X.1997.03.001
[30] BRAY J R, CURTIS J T. An ordination of upland forest communities of southern Wisconsin [J]. Ecological Monographs, 1957, 27: 325 − 349. doi:  10.2307/1942268
[31] FISHER R A, CORBET A S, WILLIAMS C B. The relation between the number of species and the number of individual in a random sample of an animal population [J]. Journal of Animal Ecology, 1943, 12(1): 42 − 58. doi:  10.2307/1411
[32] PRESTON F W. The canonical distribution of commonness and Rarity: Part I [J]. Ecology, 1962, 43(2): 185 − 215. doi:  10.2307/1931976
[33] MOTOMARA I. A statistical treatment of ecological communities [J]. Zoological Magazine, 1932, 44: 379 − 383.
[34] MACARTHUR R H. On the relative abundance of bird species [J]. Proceedings of the National Academy of Sciences, 1957, 43(3): 293 − 295. doi:  10.1073/pnas.43.3.293
[35] ALONSO D, MCKANE A J. Sampling Hubbell's neutral theory of biodiversity [J]. Ecology Letters, 2004, 7(10): 901 − 910. doi:  10.1111/j.1461-0248.2004.00640.x
[36] VOLKOV I, BANAVAR J R, HUBBELL S P, et al. Neutral theory and relative species abundance in ecology [J]. Nature, 2003, 424(6952): 1035 − 1037. doi:  10.1038/nature01883
[37] MCGILL B J. A test of the unified neutral theory of biodiversity [J]. Nature, 2003, 422: 881 − 885. doi:  10.1038/nature01583
[38] 高利霞, 毕润成, 闫明. 山西霍山油松林的物种多度分布格局[J]. 植物生态学报, 2011, 35(12): 1256 − 1270.
[39] SEKHON J S. Multivariate and Propensity Score Matching Software with Automated Balance Optimization: The Matching package for R [J]. Journal of Statistical Software, 2011, 42(7): 1 − 52.
[40] SALAZAR L, HOMEIER J, KESSLER M, et al. Diversity patterns of ferns along elevational gradients in Andean tropical forests [J]. Plant Ecology and Diversity, 2015(8): 13 − 24.
[41] CHU C J, LUTZ J A, KRAL K, et al. Direct and indirect effects of climate on richness drive the latitudinal diversity gradients in forest trees [J]. Ecology Letters, 2019(22): 245 − 255.
[42] PIANKA E R. Latitudinal gradients in species diversity: a review of concepts [J]. The American Naturalist, 1966, 100: 33 − 46. doi:  10.1086/282398
[43] SCHEMSKE D W, MITTELBACH G G. “Latitudinal gradients in species diversity”: reflections on Pianka’s 1966 article and a look forward [J]. The American Naturalist, 2017, 189: 599 − 603. doi:  10.1086/691719
[44] STEIN A, GERSTNER K, KREFT H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales [J]. Ecology Letters, 2014, 17: 866 − 880. doi:  10.1111/ele.12277
[45] QIAN H, JIN Y, RICKLEFS R E. Patterns of phylogenetic relatedness of angiosperm woody plants across biomes and life-history stages [J]. Biogeography, 2017, 44: 1383 − 1392. doi:  10.1111/jbi.12936
[46] HUBBELL S P, FOSTER R B. Tropical rain forest: ecology and management [M]. London: The British Ecological Society, 1983: 25-41.
[47] HUBBELL S P. Neutral theory in community ecology and the hypothesis of functional equivalence. Functional [J]. Ecology, 2005, 19(1): 166 − 172.
[48] HUBBELL S P. The neutral theory of biodiversity and biogeography and Stephen Jay Gould [J]. Paleobiology, 2005, 31(5): 122 − 132.
[49] 周淑荣, 张大勇. 群落生态学的中性理论[J]. 植物生态学报, 2006, 30(5): 868 − 877. doi:  10.3321/j.issn:1005-264X.2006.05.018
[50] LINDO Z, WINCHESTER N. Scale dependent diversity patterns in arboreal and terrestrial oribatid mite (Acari: Oribatida) communities [J]. Ecography, 2008, 31(1): 53 − 60. doi:  10.1111/j.2007.0906-7590.05320.x
[51] HARPOLE W S, TILMAN D. Non-neutral patterns of species abundance in grassland communities[J]. Ecology Letters, 2006(9): 15-23.
[52] 陈俊, 艾训儒, 姚兰, 等. 木林子天然次生林典型群落物种多度分布格局的尺度效应[J]. 湖北民族学院学报 (自然科学版), 2018, 36(2): 130 − 133.
[53] 程佳佳, 米湘成, 马克平, 等. 亚热带常绿阔叶林群落物种多度分布格局对取样尺度的响应[J]. 生物多样性, 2011, 19(2): 168 − 177.
[54] FISHEER C K, MEHT P. The transition between the niche and neutral regimes in ecology [J]. Proceedings of the National Academy of Sciences, 2014, 111(36): 13111 − 13116. doi:  10.1073/pnas.1405637111
[55] VAZQUEZ L B, GASTON K J. Rarity, commonness, and patterns of species richness: the mammals of Mexico [J]. Global Ecology and Biogeography, 2004, 13: 535 − 542. doi:  10.1111/j.1466-822X.2004.00126.x
[56] PEARMAN P B, WEBER D. Common species determine richness patterns in biodiversity indicator taxa [J]. Biological Conservation, 2007, 138(1): 109 − 119.
[57] 刘旻霞, 李全弟, 蒋晓轩,等. 甘南亚高寒草甸稀有种对物种多样性和物种多度分布格局的贡献[J]. 生物多样性, 2020, 28(2): 107 − 116. doi:  10.17520/biods.2019297
[58] VELLEND M. Conceptual synthesis in community ecology [J]. Quarterly Review of Biology, 2010, 85(2): 183 − 206. doi:  10.1086/652373
[59] 刘金亮, 于明坚. 片段化森林群落构建的生态过程及其检验方法[J]. 植物生态学报, 2019, 43(11): 929 − 945. doi:  10.17521/cjpe.2019.0155
[60] HU Y H, SHA L Q, BLANCHET F G, et al. Dominant species and dispersal limitation regulate tree species distributions in a 20-ha plot in Xishuangbanna, southwest China [J]. Oikos, 2012, 121(6): 952 − 960. doi:  10.1111/j.1600-0706.2011.19831.x
[61] MOUILLOT D, LEPRETRE A, ANDREI-RUIZ M C, et al. The fractal model: a new model to describe the species accumulation process and relative abundance distribution (RAD) [J]. Oikos, 2000, 90(2): 333 − 342. doi:  10.1034/j.1600-0706.2000.900214.x