[1] AKIRA M, TSUKADA M, WADA Y, et al. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae [J]. Gene, 1997, 192(2): 245 − 250. doi:  10.1016/S0378-1119(97)00084-X
[2] PARZYCH K R, ARIOSA A, MARI M, et al. A newly characterized vacuolar serine carboxypeptidase, Atg42/Ybr139w, is required for normal vacuole function and the terminal steps of autophagy in the yeast Saccharomyces cerevisiae [J]. Molecular Biology of the Cell, 2018, 29(9): 1089 − 1099. doi:  10.1091/mbc.E17-08-0516
[3] LI F, VIERSTRA R D. Autophagy: a multifaceted intracellular system for bulk and selective recycling [J]. Trends in Plant Science, 2012, 17(9): 526 − 537. doi:  10.1016/j.tplants.2012.05.006
[4] JACOMIN A, PETRIDI S, DI M M, et al. Regulation of Expression of Autophagy Genes by Atg8a-Interacting Partners Sequoia, YL-1, and Sir2 in Drosophila [J]. Cell Reports, 2020, 31(8): 107695. doi:  10.1016/j.celrep.2020.107695
[5] WANG Q, LIU H, XU H, et al. Independent losses and duplications of autophagy-related genes in fungal tree of life [J]. Environ Microbiol., 2019, 21(1): 226 − 243. doi:  10.1111/1462-2920.14451
[6] FRANCESCA NAZIO F S M A. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6 [J]. NATURE CELL BIOLOGY, 2013, 4(15): 406 − 416.
[7] ZELANTE T, IANNITTI R G, De LUCA A, et al. Sensing of mammalian IL-17A regulates fungal adaptation and virulence [J]. Nature Communications, 2012, 3(1): 1 − 10. doi:  10.1038/ncomms1685
[8] STEPHAN J S, YEH Y Y, RAMACHANDRAN V, et al. The Tor and PKA signaling pathways independently target the Atg1/Atg13 protein kinase complex to control autophagy [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(40): 17049 − 17054. doi:  10.1073/pnas.0903316106
[9] PUENTE C, HENDRICKSON R C, JIANG X. Nutrient-regulated Phosphorylation of ATG13 Inhibits Starvation-induced Autophagy [J]. Journal of Biological Chemistry, 2016, 291(11): 6026 − 6035. doi:  10.1074/jbc.M115.689646
[10] ZHU X, LI L, WU M, et al. Current opinions on autophagy in pathogenicity of fungi [J]. Virulence, 2019, 10(1): 481 − 489. doi:  10.1080/21505594.2018.1551011
[11] SUZUKI S W, YAMAMOTO H, OIKAWA Y, et al. Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(11): 3350 − 3355. doi:  10.1073/pnas.1421092112
[12] JAO C C, RAGUSA M J, STANLEY R E, et al. A HORMA domain in Atg13 mediates PI 3-kinase recruitment in autophagy [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(14): 5486 − 5491. doi:  10.1073/pnas.1220306110
[13] RAGUSA M J, STANLEY R E, HURLEY J H. Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis [J]. Cell, 2012, 151(7): 1501 − 1512. doi:  10.1016/j.cell.2012.11.028
[14] KABEYA Y, KAMADA Y, BABA M, et al. Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy [J]. Molecular Biology of the Cell, 2005, 16(5): 2544 − 2553. doi:  10.1091/mbc.e04-08-0669
[15] CHEW L H, SETIAPUTRA D, KLIONSKY D J, et al. Structural characterization of the Saccharomyces cerevisiae autophagy regulatory complex Atg17-Atg31-Atg29 [J]. Autophagy, 2013, 9(10): 1467 − 1474. doi:  10.4161/auto.25687
[16] LIU X, MAO K, YU A Y H, et al. The Atg17-Atg31-Atg29 complex coordinates with Atg11 to recruit the Vam7 SNARE and mediate autophagosome-vacuole fusion [J]. Current Biology, 2016, 26(2): 150 − 160. doi:  10.1016/j.cub.2015.11.054
[17] KERSHAW M J, TALBOT N J. Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(37): 15967 − 15972. doi:  10.1073/pnas.0901477106
[18] STACK J H, DEWALD D B, TAKEGAWA K, et al. Vesicle-mediated protein transport: regulatory interactions between the Vps15 protein kinase and the Vps34 PtdIns 3-kinase essential for protein sorting to the vacuole in yeast [J]. The Journal of Cell Biology, 1995, 129(2): 321 − 334. doi:  10.1083/jcb.129.2.321
[19] SLESSAREVA J E, ROUTT S M, TEMPLE B, et al. Activation of the Phosphatidylinositol 3-Kinase Vps34 by a G Protein α Subunit at the Endosome [J]. Cell, 2006, 126(1): 191 − 203. doi:  10.1016/j.cell.2006.04.045
[20] OBARA K, SEKITO T, OHSUMI Y. Assortment of Phosphatidylinositol 3-Kinase Complexes—Atg14p Directs Association of Complex I to the Pre-autophagosomal Structure in Saccharomyces cerevisiae [J]. Molecular biology of the cell, 2006, 17(4): 1527 − 1539. doi:  10.1091/mbc.e05-09-0841
[21] KIHARA A, NODA T, ISHIHARA N, et al. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae [J]. The Journal of Cell Biology, 2001, 152(3): 519 − 530. doi:  10.1083/jcb.152.3.519
[22] ZHU X, LIANG S, SHI H, et al. VPS9 domain-containing proteins are essential for autophagy and endocytosis in Pyricularia oryzae [J]. Environmental Microbiology, 2018, 20(4): 1516 − 1530. doi:  10.1111/1462-2920.14076
[23] LAI L, YU C, WONG J, et al. Subnanometer resolution cryo-EM structure of Arabidopsis thaliana ATG9 [J]. Autophagy, 2020, 16(3): 575 − 583. doi:  10.1080/15548627.2019.1639300
[24] SCHÜTTER M, GIAVALISCO P, BRODESSER S, et al. Local Fatty Acid Channeling into Phospholipid Synthesis Drives Phagophore Expansion during Autophagy [J]. Cell, 2020, 180(1): 135 − 149. doi:  10.1016/j.cell.2019.12.005
[25] RAO Y, PERNA M G, HOFMANN B, et al. The Atg1-kinase complex tethers Atg9-vesicles to initiate autophagy [J]. Nature Communications, 2016, 7(1): 10338. doi:  10.1038/ncomms10338
[26] PAPINSKI D, SCHUSCHNIG M, REITER W, et al. Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase [J]. Mol Cell, 2014, 53(3): 471 − 483. doi:  10.1016/j.molcel.2013.12.011
[27] GÓMEZ-SÁNCHEZ R, ROSE J, GUIMARÃES R, et al. Atg9 establishes Atg2-dependent contact sites between the endoplasmic reticulum and phagophores [J]. Journal of Cell Biology, 2018, 217(8): 2743 − 2763. doi:  10.1083/jcb.201710116
[28] ZHUANG X, CHUNG K P, CUI Y, et al. ATG9 regulates autophagosome progression from the endoplasmic reticulum in Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(3): E426 − E435. doi:  10.1073/pnas.1616299114
[29] XU P, DAMSCHRODER D, ZHANG M, et al. Atg2, Atg9 and Atg18 in mitochondrial integrity, cardiac function and health span in Drosophila [J]. Journal of Molecular and Cellular Cardiology, 2019, 127: 116 − 124. doi:  10.1016/j.yjmcc.2018.12.006
[30] MARSHALL R S, LI F, GEMPERLINE D C, et al. Autophagic Degradation of the 26S Proteasome Is Mediated by the Dual ATG8/Ubiquitin Receptor RPN10 in Arabidopsis [J]. Molecular Cell, 2015, 58(6): 1053 − 1066. doi:  10.1016/j.molcel.2015.04.023
[31] OHSUMI Y. Molecular dissection of autophagy: two ubiquitin-like systems [J]. Nature Reviews Molecular Cell Biology, 2001, 2(3): 211 − 216. doi:  10.1038/35056522
[32] MARSHALL R S, VIERSTRA R D. Autophagy: The Master of Bulk and Selective Recycling [J]. Annu Rev Plant Biol, 2018, 69: 173 − 208. doi:  10.1146/annurev-arplant-042817-040606
[33] KHAMINETS A, BEHL C, DIKIC I. Ubiquitin-dependent and independent signals In selective autophagy [J]. Trends in Cell Biology, 2016, 26(1): 6 − 16. doi:  10.1016/j.tcb.2015.08.010
[34] DENG Y Z, RAMOS-PAMPLONA M, NAQVI N I. Autophagy-assisted glycogen catabolism regulates asexual differentiation in Magnaporthe oryzae [J]. Autophagy, 2009, 5(1): 33 − 43. doi:  10.4161/auto.5.1.7175
[35] WANG P, NOLAN T M, YIN Y, et al. Identification of transcription factors that regulate ATG8 expression and autophagy in Arabidopsis [J]. Autophagy, 2020, 16(1): 123 − 139. doi:  10.1080/15548627.2019.1598753
[36] CHRIST L, RAIBORG C, WENZEL E M, et al. Cellular functions and molecular mechanisms of the ESCRT membrane-scission machinery [J]. Trends in Biochemical Sciences, 2017, 42(1): 42 − 56. doi:  10.1016/j.tibs.2016.08.016
[37] LIU X, ZHAO Y, ZHU X, et al. Autophagy-related protein MoAtg14 is involved in differentiation, development and pathogenicity in the rice blast fungus Magnaporthe oryzae [J]. Scientific Reports, 2017, 7(1): 40118. doi:  10.1038/srep40118
[38] LIU T, LIU X, LU J, et al. The cysteine protease MoAtg4 interacts with MoAtg8 and is required for differentiation and pathogenesis in Magnaporthe oryzae [J]. Autophagy, 2014, 6(1): 74 − 85.
[39] LV W, WANG C, YANG N, et al. Genome-wide functional analysis reveals that autophagy is necessary for growth, sporulation, deoxynivalenol production and virulence in Fusarium graminearum [J]. Scientific Reports, 2017, 7(1): 11062. doi:  10.1038/s41598-017-11640-z
[40] LIU N, NING G A, LIU X H, et al. An autophagy gene, HoATG5, is involved in sporulation, cell wall integrity and infection of wounded barley leaves [J]. Microbiol Res, 2016, 192: 326 − 335. doi:  10.1016/j.micres.2016.08.008
[41] ASAKURA M, NINOMIYA S, SUGIMOTO M, et al. Atg26-mediated pexophagy is required for host invasion by the plant pathogenic fungus Colletotrichum orbiculare [J]. Plant Cell, 2009, 21(4): 1291 − 1304. doi:  10.1105/tpc.108.060996
[42] TAKANO Y, ASAKURA M, SAKAI Y. Atg26-mediated pexophagy and fungal phytopathogenicity [J]. Autophagy, 2009, 5(7): 1041 − 1042. doi:  10.4161/auto.5.7.9316
[43] 李超萍, 林春花, 翟李刚, 等. 橡胶树胶孢炭疽病菌致病相关基因CgATG8的功能分析[J]. 热带作物学报, 2013, 34(11): 2172 − 2178. doi:  10.3969/j.issn.1000-2561.2013.11.017
[44] 翟李刚, 林春花, 蔡志英, 等. 橡胶树胶孢炭疽菌细胞自噬相关基因CgAtg4的克隆与序列分析[J]. 湖北农业科学, 2014, 53(9): 2189 − 2191. doi:  10.3969/j.issn.0439-8114.2014.09.059
[45] 何芬, 罗红丽. 巴西橡胶树胶胞炭疽病菌CgE6基因RNAi突变体的构建[J]. 热带生物学报, 2014, 5(3): 233 − 238. doi:  10.3969/j.issn.1674-7054.2014.03.005
[46] YANAGISAWA S, KIKUMA T, KITAMOTO K. Functional analysis of Aoatg1 and detection of the Cvt pathway in Aspergillus oryzae [J]. FEMS Microbiology Letters, 2013, 338(2): 168 − 176. doi:  10.1111/1574-6968.12047
[47] KIKUMA T, OHNEDA M, ARIOKA M, et al. Functional analysis of the ATG8 homologue Aoatg8 and role of autophagy in differentiation and germination in Aspergillus oryzae [J]. Eukaryotic Cell, 2006, 5(8): 1328 − 1336. doi:  10.1128/EC.00024-06
[48] KIKUMA T, KITAMOTO K. Analysis of autophagy in Aspergillus oryzae by disruption of Aoatg13, Aoatg4, and Aoatg15 genes [J]. FEMS Microbiology Letters, 2011, 316(1): 61 − 69. doi:  10.1111/j.1574-6968.2010.02192.x
[49] VOIGT O, POGGELER S. Self-eating to grow and kill: autophagy in filamentous ascomycetes [J]. Applied Microbiology and Biotechnology, 2013, 97(21): 9277 − 9290. doi:  10.1007/s00253-013-5221-2
[50] NGUYEN L N, BORMANN J, Le GT, et al. Autophagy-related lipase FgATG15 of Fusarium graminearum is important for lipid turnover and plant infection [J]. Fungal Genetics and Biology, 2011, 48(3): 217 − 224. doi:  10.1016/j.fgb.2010.11.004
[51] JOSEFSEN L, DROCE A, SONDERGAARD T E, et al. Autophagy provides nutrients for nonassimilating fungal structures and is necessary for plant colonization but not for infection in the necrotrophic plant pathogen Fusarium graminearum [J]. Autophagy, 2012, 8(3): 326 − 337. doi:  10.4161/auto.18705
[52] NADAL M, GOLD S E. The autophagy genes ATG8 and ATG1 affect morphogenesis and pathogenicity in Ustilago maydis [J]. Molecular Plant Pathology, 2010, 11(4): 463 − 478. doi:  10.1111/j.1364-3703.2010.00620.x
[53] REN W, ZHANG Z, SHAO W, et al. The autophagy-related gene BcATG1 is involved in fungal development and pathogenesis in Botrytis cinerea [J]. Mol Plant Pathol, 2017, 18(2): 238 − 248. doi:  10.1111/mpp.12396
[54] SHU W J, ZHAO M J, KLIONSKY D J, et al. Old factors, new players: transcriptional regulation of autophagy [J]. Autophagy, 2020, 16(5): 956 − 958. doi:  10.1080/15548627.2020.1728611
[55] MARSHALL R S, HUA Z, MALI S, et al. ATG8-Binding UIM Proteins Define a New Class of Autophagy Adaptors and Receptors [J]. Cell, 2019, 177(3): 766 − 781. doi:  10.1016/j.cell.2019.02.009