[1] FALADE K O, AKINGBALA J O. Utilization of cassava for food[J]. Food Reviews International, 2010, 27(1): 51 − 83. doi:  10.1080/87559129.2010.518296
[2] 梁露锋, 玉琼广, 刘洁. 木薯产业发展动态及展望前景[J]. 大众科技, 2011, 13(6): 128 − 130. doi:  10.3969/j.issn.1008-1151.2011.06.057
[3] 孙琪, 陈霞, 贾泽冲, 等. 辐射花粉诱导木薯无融合生殖及鉴定研究[J]. 热带作物学报, 2017, 38(8): 1383 − 1389. doi:  10.3969/j.issn.1000-2561.2017.08.001
[4] 石晶盈, 陈维信, 刘爱媛. 植物内生菌及其防治植物病害的研究进展[J]. 生态学报, 2006, 26(7): 2395 − 2401. doi:  10.3321/j.issn:1000-0933.2006.07.044
[5] 张婉婷, 张灵枝. 茶树内生真菌的分离和鉴定研究进展[J]. 中国茶叶, 2011, 33(6): 7 − 9. doi:  10.3969/j.issn.1000-3150.2011.06.003
[6] 胡萌. 植物内生细菌研究进展[J]. 山东农业大学学报(自然科学版), 2008, 39(1): 148 − 151.
[7] 胡泽瑞, 刘媛, 彭长连, 等. 三叶鬼针草内生细菌群体多样性及重金属耐受和吲哚乙酸产生潜力[J]. 微生物学通报, 2019, 46(1): 29 − 41. doi:  10.13344/j.microbiol.china.180314
[8] 曹焜, 王晓楠, 孙宇峰, 等. 植物根部内生细菌多样性及其生防作用研究进展[J]. 农业与技术, 2017, 37(17): 1 − 3, 5.
[9] 陈梅春, 朱育菁, 刘波, 等. 基于宏基因组的茉莉花内生细菌多样性分析[J]. 热带亚热带植物学报, 2018, 26(6): 633 − 643. doi:  10.11926/jtsb.3925
[10] 刘元, 文春南, 刘淼, 等. 基于高通量测序技术的怀山药与菜山药内生细菌多样性比较[J]. 浙江农业科学, 2018, 59(10): 1754 − 1759. doi:  10.16178/j.issn.0528-9017.20181008
[11] LIN H Y, LIU C W, PENG Z, et al. Distribution pattern of endophytic bacteria and fungi in tea plants[J]. Frontiers in Microbiology, 2022, 13(9): 872034.
[12] 张爱梅, 殷一然, 孔维宝, 等. 西藏沙棘5种不同组织内生细菌多样性[J]. 生物多样性, 2021, 29(9): 1236 − 1244.
[13] LIU Q, YUAN M, ZHOU Y, et al. A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice[J]. Plant Cell Environment, 2011, 34(11): 1958 − 1969. doi:  10.1111/j.1365-3040.2011.02391.x
[14] 王雁南, 张珣. 北京红地球葡萄内生菌的种群多样性分析[J]. 安徽农业科学, 2016, 44(3): 13 − 15. doi:  10.3969/j.issn.0517-6611.2016.03.005
[15] GUERRERO Z, LÓPEZ L E, RODRÍGUEZ T A, et al. Functional diversity of plant endophytes and their role in assisted phytoremediation [A]//BHARAGAVA R N, SAXENA G. Bioremediation of industrial waste for environmental safety: Volume II: Biological agents and methods for industrial waste management [M]. Singapore: Springer, 2020: 237-255.
[16] KOOMNOK C, TEAUMROONG N, RERKASEM B, et al. Diazotroph endophytic bacteria in cultivated and wild rice in Thailand[J]. Science Asia, 2007, 33(4): 429 − 435. doi:  10.2306/scienceasia1513-1874.2007.33.429
[17] THAREK M, DZULAIKHA K, SALWANI S, et al. Ascending endophytic migration of locally isolated diazotroph, Enterobacter sp. strain USML2 in rice[J]. Biotechnology(Faisalabad), 2011, 10(6): 521 − 527. doi:  10.3923/biotech.2011.521.527
[18] KLAYRAUNG S, NIAMSUP P, POONNOY P, et al. Diversity and control of bacterial contamination of plants propagated in temporary immersion bioreactor system[J]. Acta Horticulture, 2017(1115): 439 − 446.
[19] 黎起秦, 焦成, 农倩, 等. 广西水稻内生细菌的动态分布及其对水稻纹枯病菌的拮抗作用[J]. 中国生物防治, 2010, 26(3): 312 − 319.
[20] DEFEZ R, ANDREOZZI A, BIANCO C. The overproduction of indole-3-acetic acid (IAA) in endophytes upregulates nitrogen fixation in both bacterial cultures and inoculated rice plants[J]. Microbial Ecology, 2017, 74(2): 441 − 452. doi:  10.1007/s00248-017-0948-4
[21] DASTOGEER K M G, LI H, SIVASITHAMPARAM K, et al. Host specificity of endophytic mycobiota of wild Nicotiana plants from arid regions of northern Australia[J]. Microbial Ecology, 2018, 75(1): 74 − 87. doi:  10.1007/s00248-017-1020-0
[22] ZHANG Y, YU X, ZHANG W, et al. Interactions between endophytes and plants: beneficial effect of endophytes to ameliorate biotic and abiotic stresses in plants[J]. Journal of Plant Biology, 2019, 62(1): 1 − 13. doi:  10.1007/s12374-018-0274-5
[23] 郭丽丽, 尹伟伦, 郭大龙, 等. 油用凤丹牡丹不同种植时间根际细菌群落多样性变化[J]. 林业科学, 2017, 53(11): 131 − 144. doi:  10.11707/j.1001-7488.20171115
[24] ABOU-SHANAB R A I, BERKUM P, ANGLE J S, et al. Characterization of Ni-resistant bacteria in the rhizosphere of the hyperaccumulator Alyssum murale by 16S rRNA gene sequence analysis[J]. World Journal of Microbiology & Biotechnology, 2010, 26(1): 101 − 108.
[25] WANG F, MEN X, ZHANG G, et al. Assessment of 16S rRNA gene primers for studying bacterial community structure and function of aging flue-cured tobaccos[J]. AMB Express, 2018, 8(1): 182. doi:  10.1186/s13568-018-0713-1
[26] 朱启良, 刘洪凯, 陈旭, 等. 杨树人工林根际古菌群落随细根生长的演变[J]. 应用生态学报, 2019, 30(3): 849 − 856. doi:  10.13287/j.1001-9332.201903.034
[27] 张秋玉, 陈晶, 周雪妹, 等. 莼菜不同组织内生细菌多样性的比较分析[J]. 中南民族大学学报(自然科学版), 2022, 41(3): 285 − 291.
[28] 吴燕燕, 徐伟芳, 罗琴, 等. Illumina MiSeq高通量测序分析不同品种桑树内生细菌多样性[J]. 蚕学通讯, 2018, 38(3): 1 − 10. doi:  10.3969/j.issn.1006-0561.2018.03.001
[29] 赵柏霞, 闫建芳. 高通量技术分析‘砂蜜豆’甜樱桃不同组织内生细菌多样性 [J]. 中国农业科技导报: 2023, 25(3): 66−77.
[30] BODENHAUSEN N, HORTON M W, BERGELSON J, et al. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana [J/OL]. PLoS One, 2013, 8(2): e56329.
[31] RANGJAROEN C, RERKASEM B, TEAUMROONG N, et al. Comparative study of endophytic and endophytic diazotrophic bacterial communities across rice landraces grown in the highlands of northern Thailand[J]. Archives of Microbiology, 2014, 196(1): 35 − 49. doi:  10.1007/s00203-013-0940-4
[32] SHI Y, YANG H, ZHANG T, et al. Illumina-based analysis of endophytic bacterial diversity and space-time dynamics in sugar beet on the north slope of Tianshan Mountain[J]. Applied Microbiology and Biotechnology, 2014, 98(14): 6375 − 6385. doi:  10.1007/s00253-014-5720-9
[33] MENENDEZ E, CARRO L.Actinobacteria and their role as plant probiotics [M]//GIRI B, PRASAD R, WU Q S, et al. Biofertilizers for Sustainable Agriculture and Environment. Cham: Springer International Publishing, Cham: Springer, 2019: 333−351.
[34] 王改萍, 祝长青, 王茹. 一株耐盐甲基杆菌Methylobacterium sp. W-1的分离及促生潜能研究[J]. 微生物学通报, 2021, 48(11): 4134 − 4144.
[35] 田丹丹, 宋修鹏, 蒋承健, 等. 1株甲基杆菌Methylobacterium sp. WGM16的鉴定及降解甲醇的最佳培养条件[J]. 微生物学杂志, 2011, 31(1): 28 − 33. doi:  10.3969/j.issn.1005-7021.2011.01.007
[36] 黄海东, 刘云, 刘如林. 合成生物聚合物的重要微生物资源鞘氨醇单胞菌[J]. 微生物学报, 2009, 49(5): 561 − 567.
[37] 台喜生, 冯佳丽, 李梅, 等. 鞘氨醇单胞菌在生物降解方面的研究进展[J]. 湖南农业科学, 2011(7): 29 − 33. doi:  10.3969/j.issn.1006-060X.2011.07.007
[38] SHEN S Y, FULTHORPE R. Seasonal variation of bacterial endophytes in urban trees[J]. Frontiers in Microbiology, 2015, 6: 427.
[39] DING T, MELCHER U. Influences of plant species season and location on leaf endophytic bacterial communities of non-cultivated plants [J]. PLoS One, 2016, 11(3): e0150895.
[40] DE OLIVEIRA COSTA L E, DE QUEIROZ M V, BORGES A C, et al. Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris)[J]. Brazilian Journal of Microbiology, 2012, 43(4): 1562 − 1575. doi:  10.1590/S1517-83822012000400041
[41] SHI Y W, LOU K, LI C, et al. Illumina-based analysis of bacterial diversity related to halophytes Salicornia europaea and Sueada aralocaspica[J]. Journal of Microbiology, 2015, 53(10): 678 − 685. doi:  10.1007/s12275-015-5080-x
[42] HAMEED A, YEH M W, HSIEH Y T, et al. Diversity and functional characterization of bacterial endophytes dwelling in various rice (Oryza sativa L.) tissues, and their seed-borne dissemination into rhizosphere under gnotobiotic P-stress[J]. Plant and Soil, 2015, 394(1/2): 177 − 197.
[43] 谢红炼, 汪汉成, 蔡刘体, 等. 烟草种子内生细菌群落结构与多样性[J]. 微生物学报, 2020, 60(3): 601 − 616. doi:  10.13343/j.cnki.wsxb.20190275
[44] XU L, NAYLOR D, DONG Z, et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria[J]. Proceedings of the National Academy of sciences of the United States of America, 2018, 115(18): E4284 − E4293.
[45] SINGH R K, TIWARI S P, RAI A K, et al. Cyanobacteria: an emerging source for drug discovery[J]. Journal of Antibiotics, 2011, 64(6): 401 − 412.
[46] ARMSTRONG L, VAZ M G M V, GENUáRIO D B, et al. Volatile compounds produced by Cyanobacteria isolated from mangrove environment[J]. Current Microbiology, 2019, 76(5): 575 − 582. doi:  10.1007/s00284-019-01658-z
[47] KELLY D P, MCDONALD I R, WOOD A P. The family Methylobacteriaceae[J]. Prokaryotes, 2014: 313 − 40.
[48] CAO Y R, WANG W, JIN R X, et al. Methylobacterium soli sp. nov. a methanol-utilizing bacterium isolated from the forest soil[J]. Antonie Van Leeuwenhoek, 2011, 99(3): 629 − 634. doi:  10.1007/s10482-010-9535-0