[1] LUÍS BORDA-DE-ÁGUA, BORGES P A V, HUBBELL S P, et al. Spatial scaling of species abundance distributions [J]. Ecography, 2012, 35(6): 549 − 556. doi:  10.1111/j.1600-0587.2011.07128.x
[2] MAGURRAN A E, HENDERSON P A. Explaining the excess of rare species in natural species abundance distributions [J]. Nature, 2003, 422(6933): 714 − 716. doi:  10.1038/nature01547
[3] LEFCHECK J S, BYRNES J E K, ISBELL F, et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats [J]. Nature Communications, 2015, 6: 6936. doi:  10.1038/ncomms7936
[4] ULRICH W, OLLIK M, UGLAND K I. A meta-nalysis of species–abundance distributions [J]. Oikos, 2010, 119(7): 1149 − 1155. doi:  10.1111/j.1600-0706.2009.18236.x
[5] GREEN J L, PLOTKIN J B. A statistical theory for sampling species abundances [J]. Ecology Letters, 2010, 10(11): 1037 − 1045.
[6] MCGILL B J, ETIENNE R S, GRAY J S, et al. Species abundance distributions [J]. Ecology Letters, 2007, 10(10): 995 − 1015. doi:  10.1111/j.1461-0248.2007.01094.x
[7] MOTOMURA I. A statistical treatment of ecological communities [J]. Zoological Magazine, 1932, 44: 379 − 383.
[8] FISHER R A, CORBET A S, WILLIAMS C B. The relation between the number of species and the number of individuals in a random sample of an animal population [J]. Journal of Animal Ecology, 1943, 12(1): 42 − 58. doi:  10.2307/1411
[9] PRESTON F W. The canonical distribution of commonness and rarity: Part I [J]. Ecology, 1962, 43(2): 185 − 215. doi:  10.2307/1931976
[10] MACARTHUR R H. On the relative abundance of bird species [J]. Proc. Nat. Acad Sci. USA, 1957, 43(3): 293 − 295. doi:  10.1073/pnas.43.3.293
[11] ALONSO D, MCKANE A J. Sampling Hubbell’s neutral theory of biodiversity [J]. Ecology Letters, 2004, 7(10): 901 − 910. doi:  10.1111/j.1461-0248.2004.00640.x
[12] VOLKOV I., BANAVAR J., HUBBELL S, et al Neutral theory and relative species abundance in ecology [J]. Nature, 2003, 424: 1035 − 1037. doi:  10.1038/nature01883
[13] GILBERT B, LECHOWICZ M J. Neutrality, niches, and dispersal in a temperate forest understory [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(20): 7651 − 7656. doi:  10.1073/pnas.0400814101
[14] CHAVE J. Neutral theory and community ecology [J]. Ecology Letters, 2004, 7(3): 241 − 253. doi:  10.1111/j.1461-0248.2003.00566.x
[15] 马克明. 物种多度格局研究进展[J]. 植物生态学报, 2003(3): 412 − 426.
[16] JIN Y, QIAN H, YU M J, et al. Phylogenetic structure of tree species across different life stages from seedlings to canopy trees in a subtropical evergreen broad-leaved forest [J]. Plos One, 2015, 10(6): e0131162. doi:  10.1371/journal.pone.0131162
[17] 于水强, 王静波, 郝倩葳, 等. 四种不同生活型树种细根寿命及影响因素[J]. 生态学报, 2020, 40(9): 3040 − 3047.
[18] 藏亚静, 韦博良, 许宁, 等. 宝天曼国家级自然保护区不同生活型物种及不同径级的点格局分析[J]. 河南农业大学学报, 2016, 50(4): 528 − 536.
[19] 白坤栋, 莫凌, 刘铭, 等. 广西猫儿山不同海拔常绿和落叶树种的营养再吸收模式[J]. 生态学报, 2015(17): 209 − 220.
[20] 姚志良, 温韩东, 邓云, 等. 哀牢山亚热带中山湿性常绿阔叶林树种beta多样性格局形成的驱动力[J]. 生物多样性, 2020, 28(4): 48 − 57.
[21] 姚良锦, 姚兰, 易咏梅, 等. 亚热带常绿落叶阔叶混交林优势种川陕鹅耳枥和多脉青冈的空间格局[J]. 林业科学, 2018, 54(12): 1 − 11.
[22] 谢玉彬, 马遵平, 杨庆松, 等. 基于地形因子的天童地区常绿树种和落叶树种共存机制研究[J]. 生物多样性, 2012, 20(2): 159 − 167.
[23] MATTHEWS T J, WHITTAKER R J. On the species abundance distribution in applied ecology and biodiversity management [J]. Journal of Applied Ecology, 2015, 52(2): 443 − 454. doi:  10.1111/1365-2664.12380
[24] ROMINGER A J, MILLER T E X, COLLINS S L. Relative contributions of neutral and niche-based processes to the structure of a desert grassland grasshopper community [J]. Oecologia, 2009, 161(4): 791 − 800. doi:  10.1007/s00442-009-1420-z
[25] 毕润成, 闫明, 高利霞. 山西霍山油松林的物种多度分布格局[J]. 植物生态学报, 2011, 35(12): 1256 − 1270.
[26] SEKHON J S. Multivariate and propensity score matching software with automated balance optimization: The matching package for R [J]. Journal of Statistical Software, 2011, 42(7): 52.
[27] 徐炜, 马志远, 井新, 等. 生物多样性与生态系统多功能性: 进展与展望[J]. 生物多样性, 2016, 24(1): 55 − 71.
[28] 朱强, 艾训儒, 姚兰, 等. 鄂西南亚热带山地常绿落叶阔叶混交林物种多度分布格局[J]. 西北植物学报, 2020, 40(6): 1061 − 1069.
[29] 方晓峰, 杨庆松, 刘何铭, 等. 天童常绿阔叶林中常绿与落叶物种的物种多度分布格局[J]. 生物多样性, 2016, 24(6): 629 − 638.
[30] 宋庆丰, 王兵, 牛香, 等. 江西大岗山低海拔常绿阔叶林物种组成与群落结构特征[J]. 生态学杂志, 2020, 39(2): 384 − 393.
[31] 闫琰, 张春雨, 赵秀海. 长白山不同演替阶段针阔混交林群落物种多度分布格局[J]. 植物生态学报, 2012, 36(9): 923 − 934.
[32] CHISHOLM R A, PACALA S W. Theory predicts a rapid transition from niche-structured to neutral biodiversity patterns across a speciation-rate gradient [J]. Theoretical Ecology, 2011, 4(2): 195 − 200. doi:  10.1007/s12080-011-0113-5
[33] 曹琳琳, 苏宝玲, 周旺明, 等. 长白山区典型植被类型物种多样性空间分布的尺度效应[J]. 生态学杂志, 2017, 36(11): 3102 − 3108.
[34] 张姗, 蔺菲, 原作强, 等. 长白山阔叶红松林草本层物种多度分布格局及其季节动态[J]. 生物多样性, 2015, 23(5): 641 − 648.
[35] 杜宇凡, 古琛, 乌力吉, 等. 不同载畜率下短花针茅荒漠草原物种多度格局[J]. 生态学杂志, 2016, 35(3): 675 − 683.
[36] 陈俊, 艾训儒, 姚兰, 等. 木林子天然次生林典型群落物种多度分布格局的尺度效应[J]. 湖北民族学院学报(自然科学版), 2018, 36(2): 130 − 133, 202.
[37] WU A, DENG X, HE H, et al. Responses of species abundance distribution patterns to spatial scaling in subtropical secondary forests [J]. Ecology and Evolution, 2019, 2019(2): 1 − 10.
[38] 程佳佳, 米湘成, 马克平, 等. 亚热带常绿阔叶林群落物种多度分布格局对取样尺度的响应[J]. 生物多样性, 2011, 19(2): 168 − 177.
[39] FISHER C K, MEHTA P. The transition between the niche and neutral regimes in ecology [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(36): 13111 − 13116. doi:  10.1073/pnas.1405637111
[40] ADLER P B, Hillerislambers J, Levine J M. A niche for neutrality [J]. Ecology Letters, 2007, 10(2): 95 − 104. doi:  10.1111/j.1461-0248.2006.00996.x
[41] ETIENNE R S. A new sampling formula for neutral biodiversity [J]. Ecology Letters, 2010, 8(3): 253 − 260.