| [1] | Qin Y Q, Ren X Y, Zhang Y K, et al. Distribution characteristics of antibiotic resistance genes and microbial diversity in the inshore aquaculture area of Wenchang, Hainan, China [J]. Science of the Total Environment, 2024, 914: 169695. https://doi.org/10.1016/j.scitotenv.2023.169695 doi: 10.1016/j.scitotenv.2023.169695 |
| [2] | 曹晏文, 刘丰铭, 乔明强. 噬菌体裂解酶抑菌功能与应用研究进展[J]. 农产品加工, 2024(12): 74−78. https://doi.org/10.16693/j.cnki.1671-9646(X).2024.12.017 doi: 10.16693/j.cnki.1671-9646(X).2024.12.017 |
| [3] | 闵德省. 葡萄球菌噬菌体裂解酶的研究进展[J]. 福建畜牧兽医, 2025, 47(2): 64−67. https://doi.org/10.3969/j.issn.1003-4331.2025.02.019 doi: 10.3969/j.issn.1003-4331.2025.02.019 |
| [4] | 张瑞凌, 冼盈, 张扣兴. 鲍曼不动杆菌感染与免疫研究进展[J]. 中国感染与化疗杂志, 2017, 17(2): 224−228. https://doi.org/10.16718/j.1009-7708.2017.02.022 doi: 10.16718/j.1009-7708.2017.02.022 |
| [5] | Fleming A. Classics in infectious diseases: on the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae by Alexander Fleming, reprinted from the British Journal of Experimental Pathology 10: 226−236, 1929 [J]. Reviews of Infectious Diseases, 1980, 2(1): 129−139. https://doi.org/10.1093/clinids/2.1.129 doi: 10.1093/clinids/2.1.129 |
| [6] | Christaki E, Marcou M, Tofarides A. Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence [J]. Journal of Molecular Evolution, 2020, 88(1): 26−40. https://doi.org/10.1007/s00239-019-09914-3 doi: 10.1007/s00239-019-09914-3 |
| [7] | Lopatek M, Wieczorek K, Osek J. Antimicrobial resistance, virulence factors, and genetic profiles of Vibrio parahaemolyticus from seafood [J]. Applied and Environmental Microbiology, 2018, 84(16): e00537−18. https://doi.org/10.1128/AEM.00537-18 doi: 10.1128/AEM.00537-18 |
| [8] | Marshall B M, Levy S B. Food animals and antimicrobials: impacts on human health [J]. Clinical Microbiology Reviews, 2011, 24(4): 718−733. https://doi.org/10.1128/CMR.00002-11 doi: 10.1128/CMR.00002-11 |
| [9] | Preena P G, Swaminathan T R, Kumar V J R, et al. Antimicrobial resistance in aquaculture: a crisis for concern [J]. Biologia, 2020, 75(9): 1497−1517. https://doi.org/10.2478/s11756-020-00456-4 doi: 10.2478/s11756-020-00456-4 |
| [10] | 王昕, 韩语, 潘纪汶, 等. 临床分离粪肠球菌的毒力基因和耐药基因检测及其耐药性研究[J]. 热带生物学报, 2023, 14(2): 138−144. https://doi.org/10.15886/j.cnki.rdswxb.2023.02.001 doi: 10.15886/j.cnki.rdswxb.2023.02.001 |
| [11] | Fishbein S R S, Mahmud B, Dantas G. Antibiotic perturbations to the gut microbiome [J]. Nature Reviews Microbiology, 2023, 21(12): 772−788. https://doi.org/10.1038/s41579-023-00933-y doi: 10.1038/s41579-023-00933-y |
| [12] | Mäntynen S, Laanto E, Oksanen H M, et al. Black box of phage-bacterium interactions: exploring alternative phage infection strategies [J]. Open Biology, 2021, 11(9): 210188. https://doi.org/10.1098/rsob.210188 doi: 10.1098/rsob.210188 |
| [13] | Łusiak-Szelachowska M, Weber-Dąbrowska B, Górski A. Bacteriophages and lysins in biofilm control [J]. Virologica Sinica, 2020, 35(2): 125−133. https://doi.org/10.1007/s12250-019-00192-3 doi: 10.1007/s12250-019-00192-3 |
| [14] | Golban M, Charostad J, Kazemian H, et al. Phage-derived endolysins against resistant Staphylococcus spp: a review of features, antibacterial activities, and recent applications [J]. Infectious Diseases and Therapy, 2025, 14(1): 13−57. https://doi.org/10.1007/s40121-024-01069-z doi: 10.1007/s40121-024-01069-z |
| [15] | Rahman M U, Wang W X, Sun Q Q, et al. Endolysin, a promising solution against antimicrobial resistance [J]. Antibiotics, 2021, 10(11): 1277. https://doi.org/10.3390/antibiotics10111277 doi: 10.3390/antibiotics10111277 |
| [16] | Hampton H G, Watson B N J, Fineran P C. The arms race between bacteria and their phage foes [J]. Nature, 2020, 577(7790): 327−336. https://doi.org/10.1038/s41586-019-1894-8 doi: 10.1038/s41586-019-1894-8 |
| [17] | Pfeifer E, Bonnin R A, Rocha E P C. Phage-plasmids spread antibiotic resistance genes through infection and lysogenic conversion [J]. mBio, 2022, 13(5): e01851−22. https://doi.org/10.1128/mbio.01851-22 doi: 10.1128/mbio.01851-22 |
| [18] | Kieffer N, Hipólito A, Ortiz-Miravalles L, et al. Mobile integrons encode phage defense systems [J]. Science, 2025, 388(6747): eads0915. https://doi.org/10.1126/science.ads0915 doi: 10.1126/science.ads0915 |
| [19] | Singh A N, Singh A, Singh S K, et al. Klebsiella pneumoniae infections and phage therapy [J]. Indian Journal of Medical Microbiology, 2024, 52: 100736. https://doi.org/10.1016/j.ijmmb.2024.100736 doi: 10.1016/j.ijmmb.2024.100736 |
| [20] | Müller S, Wolf A J, Iliev I D, et al. Poorly cross-linked peptidoglycan in MRSA due to mecA induction activates the inflammasome and exacerbates immunopathology [J]. Cell Host & Microbe, 2015, 18(5): 604−612. https://doi.org/10.1016/j.chom.2015.10.011 doi: 10.1016/j.chom.2015.10.011 |
| [21] | Abdelrahman F, Gangakhedkar R, Nair G, et al. Pseudomonas phage ZCPS1 endolysin as a potential therapeutic agent [J]. Viruses, 2023, 15(2): 520. https://doi.org/10.3390/v15020520 doi: 10.3390/v15020520 |
| [22] | Vázquez R, García E, García P. Sequence-function relationships in phage-encoded bacterial cell wall lytic enzymes and their implications for phage-derived product design [J]. Journal of Virology, 2021, 95(14): e00321−21. |
| [23] | Schmelcher M, Donovan D M, Loessner M J. Bacteriophage endolysins as novel antimicrobials [J]. Future Microbiology, 2012, 7(10): 1147−1171. https://doi.org/10.2217/fmb.12.97 doi: 10.2217/fmb.12.97 |
| [24] | Dams D, Briers Y. Enzybiotics: enzyme-based antibacterials as therapeutics [J]. Advances in Experimental Medicine and Biology, 2019, 1148: 233−253. https://doi.org/10.1007/978-981-13-7709-9_11 doi: 10.1007/978-981-13-7709-9_11 |
| [25] | Qiao S, Luo Q S, Zhao Y, et al. Structural basis for lipopolysaccharide insertion in the bacterial outer membrane [J]. Nature, 2014, 511(7507): 108−111. https://doi.org/10.1038/nature13484 doi: 10.1038/nature13484 |
| [26] | Chang Y. Bacteriophage-derived endolysins applied as potent biocontrol agents to enhance food safety [J]. Microorganisms, 2020, 8(5): 724. https://doi.org/10.3390/microorganisms8050724 doi: 10.3390/microorganisms8050724 |
| [27] | 喻鑫婷. 金黄色葡萄球菌噬菌体裂解酶和穿孔素的克隆表达及抗菌活性研究[D]. 合肥: 安徽医科大学, 2022. https://doi.org/10.26921/d.cnki.ganyu.2022.000642 |
| [28] | Pritchard D G, Dong S L, Kirk M C, et al. LambdaSa1 and LambdaSa2 prophage lysins of Streptococcus agalactiae [J]. Applied and Environmental Microbiology, 2007, 73(22): 7150−7154. https://doi.org/10.1128/AEM.01783-07 doi: 10.1128/AEM.01783-07 |
| [29] | 滕铁山. 分枝杆菌噬菌体LiyA的分离、序列测定和基因组结构以及比较基因组分析及其gp29/gp30编码产物的裂解酶活性研究[D]. 重庆: 西南大学, 2012. |
| [30] | Wang Z J, Liu X, Shi Z X, et al. A novel lysin Ply1228 provides efficient protection against Streptococcus suis type 2 infection in a murine bacteremia model [J]. Veterinary Microbiology, 2022, 268: 109425. https://doi.org/10.1016/j.vetmic.2022.109425 doi: 10.1016/j.vetmic.2022.109425 |
| [31] | 袭恒豫. 绿色气球菌噬菌体裂解酶AVPL的生物学特性及其抗菌作用机制[D]. 长春: 吉林大学, 2024. https://doi.org/10.27162/d.cnki.gjlin.2024.000769 |
| [32] | Roach D R, Donovan D M. Antimicrobial bacteriophage-derived proteins and therapeutic applications [J]. Bacteriophage, 2015, 5(3): e1062590. https://doi.org/10.1080/21597081.2015.1062590 doi: 10.1080/21597081.2015.1062590 |
| [33] | 杨航, 余军平, 危宏平. 裂解酶治疗的研究进展与应用前景[J]. 微生物学通报, 2015, 42(1): 178−184. https://doi.org/10.13344/j.microbiol.china.140623 doi: 10.13344/j.microbiol.china.140623 |
| [34] | Pastagia M, Schuch R, Fischetti V A, et al. Lysins: the arrival of pathogen-directed anti-infectives [J]. Journal of Medical Microbiology, 2013, 62 (Pt 10): 1506−1516. https://doi.org/10.1099/jmm.0.061028-0 |
| [35] | Young R. Phage lysis: three steps, three choices, one outcome [J]. Journal of Microbiology, 2014, 52(3): 243−258. https://doi.org/10.1007/s12275-014-4087-z doi: 10.1007/s12275-014-4087-z |
| [36] | Garde S, Chodisetti P K, Reddy M. Peptidoglycan: structure, synthesis, and regulation [J]. EcoSal Plus, 2021, 9(2): eESP−0010-2020. https://doi.org/10.1128/ECOSALPLUS.ESP-0010-2020 doi: 10.1128/ECOSALPLUS.ESP-0010-2020 |
| [37] | Vollmer W, Blanot D, De Pedro M A. Peptidoglycan structure and architecture [J]. FEMS Microbiology Reviews, 2008, 32(2): 149−167. https://doi.org/10.1111/j.1574-6976.2007.00094.x doi: 10.1111/j.1574-6976.2007.00094.x |
| [38] | Loessner M J. Bacteriophage endolysins—current state of research and applications [J]. Current Opinion in Microbiology, 2005, 8(4): 480−487. https://doi.org/10.1016/j.mib.2005.06.002 doi: 10.1016/j.mib.2005.06.002 |
| [39] | Broendum S S, Buckle A M, Mcgowan S. Catalytic diversity and cell wall binding repeats in the phage-encoded endolysins [J]. Molecular Microbiology, 2018, 110(6): 879−896. https://doi.org/10.1111/mmi.14134 doi: 10.1111/mmi.14134 |
| [40] | Abdelrahman F, Easwaran M, Daramola O I, et al. Phage-encoded endolysins [J]. Antibiotics, 2021, 10(2): 124. https://doi.org/10.3390/antibiotics10020124 doi: 10.3390/antibiotics10020124 |
| [41] | Cheng X, Zhang X, Pflugrath J W, et al. The structure of bacteriophage T7 lysozyme, a zinc amidase and an inhibitor of T7 RNA polymerase [J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(9): 4034−4038. https://doi.org/10.1073/pnas.91.9.4034 doi: 10.1073/pnas.91.9.4034 |
| [42] | Yang S P, Meng X P, Zhen Y Q, et al. Strategies and mechanisms targeting Enterococcus faecalis biofilms associated with endodontic infections: a comprehensive review [J]. Frontiers in Cellular and Infection Microbiology, 2024, 14: 1433313. https://doi.org/10.3389/fcimb.2024.1433313 doi: 10.3389/fcimb.2024.1433313 |
| [43] | 刘宝玲, 陈天宝, 柳旭辉, 等. 新型抗生物膜药物研究进展[J]. 动物医学进展, 2023, 44(11): 84−88. https://doi.org/10.16437/j.cnki.1007-5038.2023.11.015 doi: 10.16437/j.cnki.1007-5038.2023.11.015 |
| [44] | Wu J A, Kusuma C, Mond J J, et al. Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces [J]. Antimicrobial Agents and Chemotherapy, 2003, 47(11): 3407−3414. https://doi.org/10.1128/AAC.47.11.3407-3414.2003 doi: 10.1128/AAC.47.11.3407-3414.2003 |
| [45] | Gutiérrez D, Ruas-Madiedo P, Martínez B, et al. Effective removal of staphylococcal biofilms by the endolysin LysH5 [J]. PLoS One, 2014, 9(9): e107307. https://doi.org/10.1371/journal.pone.0107307 doi: 10.1371/journal.pone.0107307 |
| [46] | Lendel A M, Antonova N P, Grigoriev I V, et al. Biofilm-disrupting effects of phage endolysins LysAm24, LysAp22, LysECD7, and LysSi3: breakdown the matrix [J]. World Journal of Microbiology and Biotechnology, 2024, 40(6): 186. https://doi.org/10.1007/s11274-024-03999-9 doi: 10.1007/s11274-024-03999-9 |
| [47] | Gutiérrez D, Briers Y. Lysins breaking down the walls of Gram-negative bacteria, no longer a no-go [J]. Current Opinion in Biotechnology, 2021, 68: 15−22. https://doi.org/10.1016/j.copbio.2020.08.014 doi: 10.1016/j.copbio.2020.08.014 |
| [48] | 刘菲, 黄柯, 郑积敏. 革兰氏阴性菌细胞表面多糖的应用潜力[J]. 化学教育(中英文), 2024, 45(6): 1−10. https://doi.org/10.13884/j.1003-3807hxjy.2023020111 doi: 10.13884/j.1003-3807hxjy.2023020111 |
| [49] | 周巾煜, 李倩倩, 黄纯翠, 等. 细菌脂多糖及其寡糖链结构分析技术研究进展[J]. 生物化学与生物物理进展, 2017, 44(1): 49−57. https://doi.org/10.16476/j.pibb.2016.0306 doi: 10.16476/j.pibb.2016.0306 |
| [50] | 莫婷, 刘马峰, 程安春. 革兰氏阴性菌脂多糖运输系统的构成及作用机制[J]. 微生物学报, 2018, 58(9): 1521−1530. https://doi.org/10.13343/j.cnki.wsxb.20170517 doi: 10.13343/j.cnki.wsxb.20170517 |
| [51] | Briers Y, Lavigne R. Breaking barriers: expansion of the use of endolysins as novel antibacterials against Gram-negative bacteria [J]. Future Microbiology, 2015, 10(3): 377−390. https://doi.org/10.2217/fmb.15.8 doi: 10.2217/fmb.15.8 |
| [52] | Ruiz N, Kahne D, Silhavy T J. Transport of lipopolysaccharide across the cell envelope: the long road of discovery [J]. Nature Reviews Microbiology, 2009, 7(9): 677−683. https://doi.org/10.1038/nrmicro2184 doi: 10.1038/nrmicro2184 |
| [53] | Blasco L, Ambroa A, Trastoy R, et al. In vitro and in vivo efficacy of combinations of colistin and different endolysins against clinical strains of multi-drug resistant pathogens [J]. Scientific Reports, 2020, 10(1): 7163. https://doi.org/10.1038/s41598-020-64145-7 doi: 10.1038/s41598-020-64145-7 |
| [54] | Kim J, Wang J, Ahn J. Combined antimicrobial effect of phage-derived endolysin and depolymerase against biofilm-forming Salmonella typhimurium [J]. Biofouling, 2023, 39(7): 763−774. https://doi.org/10.1080/08927014.2023.2265817 doi: 10.1080/08927014.2023.2265817 |
| [55] | Lood R, Winer B Y, Pelzek A J, et al. Novel phage lysin capable of killing the multidrug-resistant Gram-negative bacterium Acinetobacter baumannii in a mouse bacteremia model [J]. Antimicrobial Agents and Chemotherapy, 2015, 59(4): 1983−1991. https://doi.org/10.1128/AAC.04641-14 doi: 10.1128/AAC.04641-14 |
| [56] | Larpin Y, Oechslin F, Moreillon P, et al. In vitro characterization of PlyE146, a novel phage lysin that targets Gram-negative bacteria [J]. PLoS One, 2018, 13(2): e0192507. https://doi.org/10.1371/journal.pone.0192507 doi: 10.1371/journal.pone.0192507 |
| [57] | Low L Y, Yang C, Perego M, et al. Role of net charge on catalytic domain and influence of cell wall binding domain on bactericidal activity, specificity, and host range of phage lysins [J]. Journal of Biological Chemistry, 2011, 286(39): 34391−34403. https://doi.org/10.1074/jbc.M111.244160 doi: 10.1074/jbc.M111.244160 |
| [58] | Lai M J, Lin N T, Hu A R, et al. Antibacterial activity of Acinetobacter baumannii phage ϕAB2 endolysin(LysAB2) against both Gram-positive and Gram-negative bacteria [J]. Applied Microbiology and Biotechnology, 2011, 90(2): 529−539. https://doi.org/10.1007/s00253-011-3104-y doi: 10.1007/s00253-011-3104-y |
| [59] | Breijyeh Z, Jubeh B, Karaman R. Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it [J]. Molecules, 2020, 25(6): 1340. https://doi.org/10.3390/molecules25061340 doi: 10.3390/molecules25061340 |
| [60] | Briers Y, Cornelissen A, Aertsen A, et al. Analysis of outer membrane permeability of Pseudomonas aeruginosa and bactericidal activity of endolysins KZ144 and EL188 under high hydrostatic pressure [J]. FEMS Microbiology Letters, 2008, 280(1): 113−119. https://doi.org/10.1111/j.1574-6968.2007.01051.x doi: 10.1111/j.1574-6968.2007.01051.x |
| [61] | Sisson H M, Fagerlund R D, Jackson S A, et al. Antibacterial synergy between a phage endolysin and citric acid against the Gram-negative kiwifruit pathogen Pseudomonas syringae pv. actinidiae [J]. Applied and Environmental Microbiology, 2024, 90(3): e01846−23. https://doi.org/10.1128/aem.01846-23 doi: 10.1128/aem.01846-23 |
| [62] | Ning H Q, Cong Y, Lin H, et al. Development of cationic peptide chimeric lysins based on phage lysin Lysqdvp001 and their antibacterial effects against Vibrio parahaemolyticus: a preliminary study [J]. International Journal of Food Microbiology, 2021, 358: 109396. https://doi.org/10.1016/j.ijfoodmicro.2021.109396 doi: 10.1016/j.ijfoodmicro.2021.109396 |
| [63] | Ma Q, Guo Z M, Gao C C, et al. Enhancement of the direct antimicrobial activity of Lysep3 against Escherichia coli by inserting cationic peptides into its C terminus [J]. Antonie van Leeuwenhoek, 2017, 110(3): 347−355. https://doi.org/10.1007/s10482-016-0806-2 doi: 10.1007/s10482-016-0806-2 |
| [64] | Mancoš M, Šramková Z, Peterková D, et al. Functional expression and purification of tailor-made chimeric endolysin with the broad antibacterial spectrum [J]. Biologia, 2020, 75(11): 2031−2043. https://doi.org/10.2478/s11756-020-00508-9 doi: 10.2478/s11756-020-00508-9 |
| [65] | Hong H W, Kim Y D, Jang J, et al. Combination effect of engineered endolysin EC340 with antibiotics [J]. Frontiers in Microbiology, 2022, 13: 821936. https://doi.org/10.3389/fmicb.2022.821936 doi: 10.3389/fmicb.2022.821936 |
| [66] | Wang Y J, Xue P, Cao M F, et al. Directed evolution: methodologies and applications [J]. Chemical Reviews, 2021, 121(20): 12384−12444. https://doi.org/10.1021/acs.chemrev.1c00260 doi: 10.1021/acs.chemrev.1c00260 |
| [67] | 陈涛, 赖锦涛, 胡美林, 等. 蛋白质优化设计与从头合成引领的疫苗研发革命[J/OL]. 合成生物学, 2025[2025-09-24]. https://link.cnki.net/urlid/10.1687.Q.20250820.1317.002. |
| [68] | 张颜伊, 汪路杰, 程峰, 等. 酶定向进化技术在单细胞蛋白生产中的研究进展[J/OL]. 科学通报, 2025[2025-09-24]. https://link.cnki.net/urlid/11.1784.N.20250827.1008.004. |
| [69] | Chang Y, Li Q B, Zhang S H, et al. Identification and molecular modification of Staphylococcus aureus bacteriophage lysin LysDZ25 [J]. ACS Infectious Diseases, 2023, 9(3): 497−506. https://doi.org/10.1021/acsinfecdis.2c00493 doi: 10.1021/acsinfecdis.2c00493 |
| [70] | Kumar S, Duggineni V K, Singhania V, et al. Unravelling and quantifying the biophysical– biochemical descriptors governing protein thermostability by machine learning [J]. Advanced Theory and Simulations, 2023, 6(3): 2200703. https://doi.org/10.1002/adts.202200703 doi: 10.1002/adts.202200703 |
| [71] | 石甜, 史聪聪, 衡冰冰, 等. 副溶血弧菌噬菌体裂解酶LysF23s2和LysH256D1的表达及活性分析[J]. 武汉轻工大学学报, 2024, 43(5): 10−17. |
| [72] | Loessner M J, Kramer K, Ebel F, et al. C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates [J]. Molecular Microbiology, 2002, 44(2): 335−349. https://doi.org/10.1046/j.1365-2958.2002.02889.x doi: 10.1046/j.1365-2958.2002.02889.x |
| [73] | 张时雨. 裂解酶Ply0643及其嵌合体的体内外抑菌活性以及菲啶酮类化合物抑菌活性的分析[D]. 南京: 南京农业大学, 2021. doi: 10.27244/d.cnki.gnjnu.2021.001210 |
| [74] | Sass P, Bierbaum G. Lytic activity of recombinant bacteriophage φ11 and φ12 endolysins on whole cells and biofilms of Staphylococcus aureus [J]. Applied and Environmental Microbiology, 2007, 73(1): 347−352. https://doi.org/10.1128/AEM.01616-06 doi: 10.1128/AEM.01616-06 |
| [75] | Low L Y, Yang C, Perego M, et al. Structure and lytic activity of a Bacillus anthracis prophage endolysin [J]. Journal of Biological Chemistry, 2005, 280(42): 35433−35439. https://doi.org/10.1074/jbc.M502723200 doi: 10.1074/jbc.M502723200 |
| [76] | Mayer M J, Garefalaki V, Spoerl R, et al. Structure-based modification of a Clostridium difficile-targeting endolysin affects activity and host range [J]. Journal of Bacteriology, 2011, 193(19): 5477−5486. https://doi.org/10.1128/JB.00439-11 doi: 10.1128/JB.00439-11 |
| [77] | 黄春正. 裂解酶LysLF1的生物学特性及其抗链球菌的效果评价[D]. 长春: 吉林大学, 2023. https://doi.org/10.27162/d.cnki.gjlin.2023.004564 |
| [78] | Horgan M, O'flynn G, Garry J, et al. Phage lysin LysK can be truncated to its CHAP domain and retain lytic activity against live antibiotic-resistant staphylococci [J]. Applied and Environmental Microbiology, 2009, 75(3): 872−874. https://doi.org/10.1128/AEM.01831-08 doi: 10.1128/AEM.01831-08 |
| [79] | Yang H, Luo D H, Etobayeva I, et al. Linker editing of pneumococcal lysin ClyJ conveys improved bactericidal activity [J]. Antimicrobial Agents and Chemotherapy, 2020, 64(2): e01610−e01619. https://doi.org/10.1128/AAC.01610-19 doi: 10.1128/AAC.01610-19 |
| [80] | Yang H, Yu J P, Wei H P. Engineered bacteriophage lysins as novel anti-infectives [J]. Frontiers in Microbiology, 2014, 5: 542. https://doi.org/10.3389/fmicb.2014.00542 doi: 10.3389/fmicb.2014.00542 |
| [81] | Dong Q H, Wang J, Yang H, et al. Construction of a chimeric lysin Ply187N-V12C with extended lytic activity against staphylococci and streptococci [J]. Microbial Biotechnology, 2015, 8(2): 210−220. https://doi.org/10.1111/1751-7915.12166 doi: 10.1111/1751-7915.12166 |
| [82] | Duan X C, Li X X, Li X M, et al. Exploiting broad-spectrum chimeric lysin to cooperate with mupirocin against Staphylococcus aureus-induced skin infections and delay the development of mupirocin resistance [J]. Microbiology Spectrum, 2023, 11(3): e05050−22. https://doi.org/10.1128/spectrum.05050-22 doi: 10.1128/spectrum.05050-22 |
| [83] | Roehrig C, Huemer M, Lorgé D, et al. MEndoB, a chimeric lysin featuring a novel domain architecture and superior activity for the treatment of staphylococcal infections [J]. mBio, 2024, 15(2): e02540−23. https://doi.org/10.1128/mbio.02540-23 doi: 10.1128/mbio.02540-23 |
| [84] | Li X H, Wang S J, Nyaruaba R, et al. A highly active chimeric lysin with a calcium-enhanced bactericidal activity against Staphylococcus aureus in vitro and in vivo [J]. Antibiotics, 2021, 10(4): 461. https://doi.org/10.3390/antibiotics10040461 doi: 10.3390/antibiotics10040461 |
| [85] | Becker S C, Roach D R, Chauhan V S, et al. Triple-acting lytic enzyme treatment of drug-resistant and intracellular Staphylococcus aureus [J]. Scientific Reports, 2016, 6: 25063. https://doi.org/10.1038/srep25063 doi: 10.1038/srep25063 |
| [86] | Letrado P, Corsini B, Díez-Martínez R, et al. Bactericidal synergism between antibiotics and phage endolysin Cpl-711 to kill multidrug-resistant pneumococcus [J]. Future Microbiology, 2018, 13(11): 1215−1223. https://doi.org/10.2217/fmb-2018-0077 doi: 10.2217/fmb-2018-0077 |