[1] |
GUNN B F, BAUDOUIN L, OLSEN K M. Independent origins of cultivated coconut (Cocos nucifera L.) in the old world tropics [J]. PLoS One, 2011, 6(6): 1 − 8. |
[2] |
吴翼. 椰子SSR分子标记的开发 [D]. 海口: 海南大学, 2008. |
[3] |
WANG S C, XIAO Y, ZHOU Z W, et al. High-quality reference genome sequences of two coconut cultivars provide insights into evolution of monocot chromosomes and differentiation of fiber content and plant height [J]. Genome Biology, 2021, 22(1): 2 − 25. doi: 10.1186/s13059-020-02226-6 |
[4] |
PERERA L, BAUDOUIN L, MACKAY I. SSR markers indicate a common origin of self-pollinating dwarf coconut in South-East Asia under domestication [J]. Scientia Horticulturae, 2016, 211: 255 − 262. doi: 10.1016/j.scienta.2016.08.028 |
[5] |
TEULAT B, ALDAM C, TREHIN R, et al. An analysis of genetic diversity in coconut populations from across the geographic range using sequence-tagged microsatellites (SSRs) and AFLPs [J]. Theoretical and Applied Genetics, 2000, 100(5): 764 − 771. doi: 10.1007/s001220051350 |
[6] |
PERERA L, RUSSELL J, PROVAN J, et al. Studying genetic relationships among coconut varieties/populations using microsatellite markers [J]. Euphytica, 2003, 132(1): 121 − 128. doi: 10.1023/A:1024696303261 |
[7] |
KAMARAL L C, PERERA S A, PERERA K L, et al. Genetic diversity of the Sri Lanka yellow dwarf coconut form as revealed by microsatellite markers [J]. Tropical Agricultural Research, 2015, 26(1): 131 − 139. doi: 10.4038/tar.v26i1.8078 |
[8] |
LAURELES L, RODRIGUEZ F, REANO C, et al. Variability in fatty acid and triacylglycerol composition of the oil of coconut (Cocos nucifera L. ) hybrids and their parentals [J]. Journal of Agricultural and Food Chemistry, 2002, 50(6): 1581 − 1856. doi: 10.1021/jf010832w |
[9] |
PERERA L, RUSSELL J, PROVAN J, et al. Use of microsatellite DNA markers to investigate the level of genetic diversity and population genetic structure of coconut (Cocos nucifera L.) [J]. Genome, 2000, 43(1): 15 − 21. doi: 10.1139/g99-079 |
[10] |
XIAO Y, XU P, FAN H, et al. The genome draft of coconut (Cocos nucifera L.) [J]. GigaScience, 2017, 6(11): 1 − 11. |
[11] |
KUMAR S N. Variability in coconut (Cocos nucifera L. ) germplasm and hybrids for fatty acid profile of oil [J]. Journal of Agricultural and Food Chemistry, 2011, 59(24): 13050 − 13058. doi: 10.1021/jf203182d |
[12] |
REYNOLDS K B, CULLERNE D P, El T A, et al. Identification of genes involved in lipid biosynthesis through de novo transcriptome assembly from cocos nucifera developing endosperm [J]. Plant Cell Physiology, 2019, 60(5): 945 − 960. doi: 10.1093/pcp/pcy247 |
[13] |
BABU A S, VELUSWAMY S K, ARENA R, et al. Virgin coconut oil and its potential cardioprotective effects [J]. Postgraduate Medicine, 2014, 126(7): 76 − 83. doi: 10.3810/pgm.2014.11.2835 |
[14] |
MA Z F, LEE Y Y. Virgin coconut oil and its cardiovascular health benefits [J]. Natural Product Communications, 2016, 11(8): 1151 − 1152. |
[15] |
BURDOCK G A, CARABIN I G. Safety assessment of myristic acid as a food ingredient [J]. Food Chemical Toxicology, 2007, 45(4): 517 − 529. doi: 10.1016/j.fct.2006.10.009 |
[16] |
HENRY G, MOMIN R, NAIR M, et al. Antioxidant and cyclooxygenase activities of fatty acids found in food [J]. Journal of Agricultural and Food Chemistry, 2002, 50(8): 2231 − 2234. doi: 10.1021/jf0114381 |
[17] |
KHALIL A S M, GIRIBABU N, YELUMALAIEL S, et al. Myristic acid defends against testicular oxidative stress, inflammation, apoptosis: Restoration of spermatogenesis, steroidogenesis in diabetic rats [J]. Life Sciences, 2021, 278: 119605. doi: 10.1016/j.lfs.2021.119605 |
[18] |
FAMUREWA A C, MADUAGWUNA E K, FOLAWIYO A M, et al. Antioxidant, anti-inflammatory, and antiapoptotic effects of virgin coconut oil against antibiotic drug gentamicin-induced nephrotoxicity via the suppression of oxidative stress and modulation of iNOS/NF-ĸB/caspase-3 signaling pathway in Wistar rats [J]. Journal of Food Biochemistry, 2020, 44(1): 1 − 10. |
[19] |
ILLAM S, NARAYANANKUTTY A, RAGHAVAMENON A. Polyphenols of virgin coconut oil prevent pro-oxidant mediated cell death [J]. Toxicology Mechanisms and Methods, 2017, 27(6): 442 − 450. doi: 10.1080/15376516.2017.1320458 |
[20] |
NAIRS S, MANALIL J, RAMAVARMA S, et al. Virgin coconut oil supplementation ameliorates cyclophosphamide induced systemic toxicity in mice [J]. Human & Experimental Toxicology, 2016, 35(2): 205 − 212. |
[21] |
LAW K, AZMAN N, OMAR E, et al. The effects of virgin coconut oil (VCO) as supplementation on quality of life among breast cancer patients [J]. Lipids in Health and Disease, 2014, 13: 139. doi: 10.1186/1476-511X-13-139 |
[22] |
FAMUREWA A C, AJA P M, NWANKWO O E, et al. Moringa oleifera seed oil or virgin coconut oil supplementation abrogates cerebral neurotoxicity induced by antineoplastic agent methotrexate by suppression of oxidative stress and neuro-inflammation in rats [J]. Journal of Food Biochemistry, 2019, 43(3): e12748. |
[23] |
VERMA P, NAIK S, NANDA P, et al. In vitro anticancer activity of virgin coconut oil and its fractions in liver and oral cancer cells [J]. Anti-Cancer Agents in Medicinal Chemistry, 2019, 19(18): 2223 − 2230. |
[24] |
DEEN A, VISVANATHAN R, WICKRAMARACHCHI D, et al. Chemical composition and health benefits of coconut oil: an overview [J]. Journal of The Science of Food and Agriculture, 2021, 101(6): 2182 − 2193. doi: 10.1002/jsfa.10870 |
[25] |
KUNST L, SAMUELS L. Plant cuticles shine: advances in wax biosynthesis and export [J]. Current Opinion in Plant Biology, 2009, 12(6): 721 − 727. |
[26] |
MACKOVA J, VASKOVA M, MACEK P, et al. Plant response to drought stress simulated by ABA application: Changes in chemical composition of cuticular waxes [J]. Environmental and Experimental Botany, 2013, 86: 70 − 75. doi: 10.1016/j.envexpbot.2010.06.005 |
[27] |
MARTIN L B, ROMERO P, FICH E A, et al. Cuticle biosynthesis in tomato leaves is developmentally regulated by abscisic acid [J]. Plant Physiology, 2017, 174(3): 1384 − 1398. doi: 10.1104/pp.17.00387 |
[28] |
XIONG C, XIE Q, YANG Q, et al. WOOLLY, interacting with MYB transcription factor MYB31, regulates cuticular wax biosynthesis by modulating CER6 expression in tomato [J]. Plant Journal, 2020, 103(1): 323 − 337. doi: 10.1111/tpj.14733 |
[29] |
JU Y L, LIU M, ZHAO H, et al. Effect of exogenous abscisic acid and methyl jasmonate on anthocyanin composition, fatty acids, and volatile compounds of cabernet sauvignon (Vitis vinifera L. ) grape berries [J]. Molecules, 2016, 21(10): 1354. doi: 10.3390/molecules21101354 |
[30] |
KOSMA D K, MURMU J, RAZEQ F M, et al. AtMYB41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types [J]. The Plant Journal, 2014, 80(2): 216 − 229. doi: 10.1111/tpj.12624 |
[31] |
RAFFAELE S, VAILLEAU F, LEGER A, et al. A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis [J]. The Plant Cell, 2008, 20(3): 752 − 767. doi: 10.1105/tpc.107.054858 |
[32] |
SEO P, PARK C. Cuticular wax biosynthesis as a way of inducing drought resistance [J]. Plant signaling & behavior, 2011, 6(7): 1043 − 1045. |
[33] |
LEE S B, SUH M C. Cuticular wax biosynthesis is up-regulated by the MYB94 transcription factor in Arabidopsis [J]. Plant Cell Physiology, 2015, 56(1): 48 − 60. doi: 10.1093/pcp/pcu142 |
[34] |
WANG Z, LI Z F, WANG S S, et al. 2021. NtMYB12a acts downstream of sucrose to inhibit fatty acid accumulation by targeting lipoxygenase and SFAR genes in tobacco [J]. Plant Cell Environment, 2021, 44(3): 775 − 791. doi: 10.1111/pce.13957 |
[35] |
SUN Y, SONG K, LIU L, et al. Sulfoquinovosyl diacylglycerol synthase impairs glycolipid accumulation and photosynthesis in phosphate deprived rice [J]. Journal Experimental Botany, 2021, 72(18): 6510 − 6523. doi: 10.1093/jxb/erab300 |
[36] |
BI F C, LIU Z, WU J X, et al. Loss of ceramide kinase in Arabidopsis impairs defenses and promotes ceramide accumulation and mitochondrial H2O2 bursts [J]. The Plant Cell, 2014, 26(8): 3449 − 3467. doi: 10.1105/tpc.114.127050 |
[37] |
SAUCEDO G M, GARCIA A, GONZALEZ S A, et al. MPK6, sphinganine and the LCB2a gene from serine palmitoyltransferase are required in the signaling pathway that mediates cell death induced by long chain bases in Arabidopsis [J]. New Phytologist, 2011, 191(4): 943 − 957. doi: 10.1111/j.1469-8137.2011.03727.x |
[38] |
LIANG H, YAO N, SONG J T, et al. Ceramides modulate programmed cell death in plants [J]. Genes Development, 2003, 17(21): 2636 − 2641. doi: 10.1101/gad.1140503 |