[1] CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems [J]. Science, 2013, 339: 819 − 824. doi:  10.1126/science.1231143
[2] CHO S W, KIM S, KIM J M, et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease [J]. Nat Biotechnol, 2013, 31(3): 230 − 232. doi:  10.1038/nbt.2507
[3] JINEK M, EAST A, CHENG A, et al. RNA-programmed genome editing in human cells [J]. Elife, 2013, 2: e00471. doi:  10.7554/eLife.00471
[4] MALI P, YANG L H, ESVELT K M, et al. RNA-guided human genome engineering via Cas9 [J]. Science, 2013, 339: 829 − 833.
[5] MANGUSO R T, POPE H W, ZIMMER M D, et al. in vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target [J]. Nature, 2017, 547(7664): 413 − 418. doi:  10.1038/nature23270
[6] SMALLEY E. CRISPR mouse model boom, rat model renaissance [J]. Nat Biotechnol, 2016, 34(9): 893 − 894. doi:  10.1038/nbt0916-893
[7] HWANG W Y, FU Y, REYON D, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system [J]. Nat Biotechnol, 2013, 31(3): 227 − 229. doi:  10.1038/nbt.2501
[8] SADHU M J, BLOOM J S, DAY L, et al. Highly parallel genome variant engineering with CRISPR-Cas9 [J]. Nat Genet, 2018, 50(4): 510 − 514. doi:  10.1038/s41588-018-0087-y
[9] PORT F, BULLOCK S L. Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs [J]. Nat Methods, 2016, 13(10): 852 − 854. doi:  10.1038/nmeth.3972
[10] WANG Y, LI Z, XU J, et al. The CRISPR/Cas system mediates efficient genome engineering in Bombyx mori [J]. Cell Res, 2013, 23(12): 1414 − 1416. doi:  10.1038/cr.2013.146
[11] KIM Y G, CHA J, CHANDRASEGARAN S. Hybrid restriction enzymes: Zine finger fusions to fok i cleavage domain [J]. Proc Natl Acad Sci U S A, 1996, 93(3): 1156 − 1160. doi:  10.1073/pnas.93.3.1156
[12] LI T, HUANG S, ZHAO X, et al. Modularly assembled designer tal effector nucleases for targeted gene knockout and gene replacement in eukaryotes [J]. Nucleic Acids Res, 2011, 39(14): 6315 − 6325. doi:  10.1093/nar/gkr188
[13] WAH D A, BITINALTE J, SCHILDKRAUT I, et al. Structure of FokI has implications for DNA cleavage [J]. Proc Natl Acad of Sci U S A, 1998, 95(18): 10564 − 10569. doi:  10.1073/pnas.95.18.10564
[14] BIBIKOVA M, BEUMER K, TRAUTMAN J K, et al. Enhancing gene targeting with designed zinc finger nucleases [J]. Science 2003; 300(5620): 764. PAVLETICH N P, PABO C O. Zinc finger-DNA recognition: Crystal structure of a Zif268-DNA complex at 2.1 A [J]. Science 1991; 252(5007): 809-817.
[15] BOCH J, BONAS U. Xanthomonas AvrBs3 family-type III effectors: discovery and function [J]. Annu Rev Phytopathol, 2010, 48: 419 − 436. doi:  10.1146/annurev-phyto-080508-081936
[16] SCHOLZE H, BOCH J. Tal effectors are remote controls for gene activation [J]. Curr Opin Microbiol, 2011, 14(1): 47 − 53. doi:  10.1016/j.mib.2010.12.001
[17] ISHINO Y, SHINAGAWA H, MAKINO K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in escherichia coli, and identification of the gene product [J]. J Bacteriol, 1987, 169(12): 5429 − 5433. doi:  10.1128/jb.169.12.5429-5433.1987
[18] JANSEN R, JDA V E, GAASTRA W, et al. Identification of genes that are associated with DNA repeats in prokaryotes [J]. Mol Microbiol, 2002, 43(6): 1565 − 1575. doi:  10.1046/j.1365-2958.2002.02839.x
[19] BOLOTIN A, QUINQUIS B, SOROKIN A, et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin [J]. Microbiol (Reading) 2005; 151(Pt 8): 2551-2561.
[20] MOJICA F J, DIEZ-VILLASENOR C, GARCIA-MARTINEZ J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements [J]. J Mol Evol, 2005, 60(2): 174 − 182. doi:  10.1007/s00239-004-0046-3
[21] POURCEL C, SALVIGNOL G, VERGNAUD G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies [J]. Microbiol (Reading) 2005; 151(Pt 3): 653-663.
[22] BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquired resistance against viruses in prokaryotes [J]. Science, 2007, 315: 1709 − 1713. doi:  10.1126/science.1138140
[23] BROUNS S J J, JORE M M, LUNDGREN M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes [J]. Science, 2008, 321(5801): 960 − 964.
[24] DELTCHEVA E, CHYLINSKI K, SHARMA C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III [J]. Nature, 2011, 471(7340): 602 − 607. doi:  10.1038/nature09886
[25] GARNEAU J E, DUPUIS M E, VILLION M, et al. The CRISPR/CAS bacterial immune system cleaves bacteriophage and plasmid DNA [J]. Nature, 2010, 468(7320): 67 − 71. doi:  10.1038/nature09523
[26] JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity [J]. Science, 2012, 337(6096): 816 − 822. doi:  10.1126/science.1225829
[27] GUI S, TANING C N T, WEI D, et al. First report on CRISPR/Cas9-targeted mutagenesis in the Colorado potato beetle, Leptinotarsa decemlineata [J]. J Insect Physiol, 2020, 121: 104013. doi:  10.1016/j.jinsphys.2020.104013
[28] GILLES A F, SCHINKO J B, AVEROF M. Efficient CRISPR-mediated gene targeting and transgene replacement in the beetle Tribolium castaneum [J]. Development, 2015, 142(16): 2832 − 2839.
[29] SHIRAI Y, DAIMON T. Mutations in cardinal are responsible for the red-1 and peach eye color mutants of the red flour beetle Tribolium castaneum [J]. Biochem Biophys Res Commun, 2020, 529(2): 372 − 378. doi:  10.1016/j.bbrc.2020.05.214
[30] ADRIANOS S, LORENZEN M, OPPERT B. Metabolic pathway interruption: CRISPR/Cas9-mediated knockout of tryptophan 2, 3-dioxygenase in Tribolium castaneum [J]. J Insect Physiol, 2018, 107: 104 − 109. doi:  10.1016/j.jinsphys.2018.03.004
[31] 刘帅, 王兴亮, 施雨, 等. 异色瓢虫nAChRα6基因的敲除及其对杀虫剂敏感性的影响[J]. 植物保护学报, 2020, 47(3): 478 − 487. doi:  10.13802/j.cnki.zwbhxb.2020.2019141
[32] FUJII T, BANNO Y. Enlargement of egg size by CRISPR/Cas9-mediated knockout of a sex-linked gene in the silkworm, Bombyx mori [J]. J Insect Biotechnol Sericol, 2018, 87: 71 − 78.
[33] ADDO N M, SUN X, QIN S, et al. CRISPR/Cas9-based knockout reveals that the clock gene timeless is indispensable for regulating circadian behavioral rhythms in Bombyx mori [J]. Insect Sci, 2021, 28(5): 1414 − 1425. doi:  10.1111/1744-7917.12864
[34] ZENG B, ZHAN S, WANG Y, et al. Expansion of CRISPR targeting sites in Bombyx mori [J]. Insect Biochem Mol Biol, 2016, 72: 31 − 40. doi:  10.1016/j.ibmb.2016.03.006
[35] ZHU L, MON H, XU J, et al. CRISPR/Cas9-mediated knockout of factors in non-homologous end joining pathway enhances gene targeting in silkworm cells [J]. Sci Rep, 2015, 5: 18103.
[36] 刘洪锷, 汪丽枝, 刘祖莲, 等. 利用CRISPR/Cas9双元转基因体系探究家蚕配子生成素结合蛋白基因Bmggnbp2的功能[J]. 昆虫学报, 2021, 64(3): 309 − 317.
[37] 刘帅. 棉铃虫性信息素识别及交配后行为的调控机制研究[D]. 长春: 东北师范大学, 2021.
[38] WANG J, MA H, ZHAO S, et al. Functional redundancy of two ABC transporter proteins in mediating toxicity of Bacillus thuringiensis to cotton bollworm [J]. PLoS Pathog, 2020, 16(3): e1008427. doi:  10.1371/journal.ppat.1008427
[39] PERRY M, KINOSHITA M, SALDI G, et al. Molecular logic behind the three-way stochastic choices that expand butterfly colour vision [J]. Nature, 2016, 535(7611): 280 − 284. doi:  10.1038/nature18616
[40] BI H L, XU J, HE L, et al. CRISPR/Cas9-mediated ebony knockout results in puparium melanism in Spodoptera litura [J]. Insect Sci, 2019, 26(6): 1011 − 1019. doi:  10.1111/1744-7917.12663
[41] WANG X, XU Y, HUANG J, et al. CRISPR-mediated knockout of the ABCC2 gene in Ostrinia furnacalis confers high-level resistance to the Bacillus thuringiensis Cry1Fa toxin [J]. Toxins (Basel), 2020, 12(4): 246. doi:  10.3390/toxins12040246
[42] SUN H, HUANG J M, LIU Y, et al. Knockout of ebony gene leads to melanin pigmentation in the rice stem borer, Chilo suppressalis (Lepidoptera: Crambidae) [J]. Acta Entomol Sin, 2021, 64(12): 1367 − 1376.
[43] 孙丹. CRISPR/Cas9介导的小菜蛾对Bt CRY1Ac毒素抗性的分子机制研究[D]. 长沙: 湖南大学, 2020.
[44] JI S X, BI S Y, WANG X D, et al. First report on CRISPR/Cas9-based genome editing in the destructive invasive pest Tuta absoluta (meyrick) (Lepidoptera: Gelechiidae) [J]. Front Genet, 2022, 13: 865622. doi:  10.3389/fgene.2022.865622
[45] YAN H, OPACHALOEMPHAN C, MANCINI G, et al. An engineered Orco mutation produces aberrant social behavior and defective neural development in ants [J]. Cell, 2017, 170(4): 736 − 747. doi:  10.1016/j.cell.2017.06.051
[46] KOHNO H, SUENAMI S, TAKEUCHI H, et al. Production of knockout mutants by CRISPR/Cas9 in the European honeybee, Apis mellifera L [J]. Zoolog Sci, 2016, 33(5): 505 − 512. doi:  10.2108/zs160043
[47] HU XF, ZHANG B, LIAO C H, et al. High-efficiency CRISPR/Cas9-mediated gene editing in honeybee (Apis mellifera) embryos [J]. G3 (Bethesda), 2019, 9(5): 1759 − 1766. doi:  10.1534/g3.119.400130
[48] NIE H Y, LIANG L Q, LI Q F, et al. CRISPR/Cas9 mediated knockout of Amyellow-y gene results in melanization defect of the cuticle in adult Apis mellifera [J]. J Insect Physiol, 2021, 132: 104264. doi:  10.1016/j.jinsphys.2021.104264
[49] LI M, AU L Y C, DOUGLAH D, et al. Generation of heritable germline mutations in the jewel wasp Nasonia vitripennis using CRISPR/Cas9 [J]. Sci Rep, 2017, 7(1): 901. doi:  10.1038/s41598-017-00990-3
[50] RODRIGUEZ D C, BENETTA E D, HEU C C, et al. Germline mutagenesis of Nasonia vitripennis through ovarian delivery of CRISPR-Cas9 ribonucleoprotein [J]. Insect Mol Biol, 2020, 29(6): 569 − 577. doi:  10.1111/imb.12663
[51] CHEN J X, LI W X, LYU J, et al. CRISPR/Cas9-mediated knockout of the NlCSAD gene results in darker cuticle pigmentation and a reduction in female fecundity in Nilaparvata lugens (Hemiptera: Delphacidae) [J]. Comp Biochem Physiol A Mol Integr Physiol, 2021, 256: 110921. doi:  10.1016/j.cbpa.2021.110921
[52] ZHAO Y, HUANG G, ZHANG W. Mutations in NlInR1 affect normal growth and lifespan in the brown planthopper Nilaparvata lugens [J]. Insect Biochem Mol Biol, 2019, 115: 103246. doi:  10.1016/j.ibmb.2019.103246
[53] HEU C C, MCCULLOUGH F M, LUAN J, et al. CRISPR-Cas9-based genome editing in the silverleaf whitefly (Bemisia tabaci) [J]. CRISPR J, 2020, 3(2): 89 − 96. doi:  10.1089/crispr.2019.0067
[54] 王原, 吕志创, 万方浩. 烟粉虱CRISPR/Cas9系统的建立及其在BtTRP基因温度耐受性功能验证中的应用[J]. 中国生物防治学报, 2018, 34(2): 254 − 258. doi:  10.16409/j.cnki.2095-039x.2018.02.012
[55] PACHECO I S, DOSS A A, VINDIOLA B G, et al. Efficient CRISPR/Cas9-mediated genome modification of the glassy-winged sharpshooter Homalodisca vitripennis (Germar) [J]. Sci Rep, 2022, 12(1): 6428. doi:  10.1038/s41598-022-09990-4
[56] 左恺然. 绿盲蝽对毒死蜱的抗性机理研究及CRISPR/Cas9基因敲除体系的构建[D]. 南京: 南京农业大学, 2019.
[57] CHEN D, TANG J X, LI B, et al. CRISPR/Cas9-mediated genome editing induces exon skipping by complete or stochastic altering splicing in the migratory locust [J]. BMC Biotechnol, 2018, 18(1): 60. doi:  10.1186/s12896-018-0465-7
[58] ZHANG T T, WEN T M, YUE Y, et al. Egg tanning improves the efficiency of CRISPR/Cas9-mediated mutant locust production by enhancing defense ability after microinjection [J]. J Integr Agr, 2021, 20(10): 2716 − 2726. doi:  10.1016/S2095-3119(21)63736-X
[59] MATSUOKA Y, NAKAMURA T, WATANABE T, et al. Establishment of CRISPR/Cas9-based knock-in in a hemimetabolous insect: targeted gene tagging in the cricket Gryllus bimaculatus[J]. bioRxiv 2021.doi: https://doi.org/10.1101/2021.05.10.441399
[60] BASU S, ARYAN A, OVERCASH J M, et al. Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti [J]. Proc Natl Acad Sci U S A, 2015, 112(13): 4038 − 4043. doi:  10.1073/pnas.1502370112
[61] ZULHUSSNAIN M, ZAHOOR M K, RANIAN K, et al. CRISPR Cas9 mediated knockout of sex determination pathway genes in Aedes aegypti [J]. Bull Entomol Res, 2022: 1 − 10.
[62] ZHAN Y, ALONSO SAN ALBERTO D, RUSCH C, et al. Elimination of vision-guided target attraction in Aedes aegypti using CRISPR [J]. Curr Biol, 2021, 31(18): 4180 − 4187. doi:  10.1016/j.cub.2021.07.003
[63] DONG Y, SIMOES M L, MAROIS E, et al. CRISPR/Cas9-mediated gene knockout of Anopheles gambiae FREP1 suppresses malaria parasite infection [J]. PLoS Pathog, 2018, 14(3): 1006898. doi:  10.1371/journal.ppat.1006898
[64] XUE W H, XU N, YUAN X B, et al. CRISPR/Cas9-mediated knockout of two eye pigmentation genes in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) [J]. Insect Biochem Mol Biol, 2018, 93: 19 − 26. doi:  10.1016/j.ibmb.2017.12.003
[65] KHAN S A, REICHELT M, HECKEL D G. Functional analysis of the ABCs of eye color in Helicoverpa armigera with CRISPR/Cas9-induced mutations [J]. Sci Rep, 2017, 7: 40025. doi:  10.1038/srep40025
[66] MATSUOKA Y, MONTEIRO A. Melanin pathway genes regulate color and morphology of butterfly wing scales [J]. Cell Rep, 2018, 24(1): 56 − 65. doi:  10.1016/j.celrep.2018.05.092
[67] WANG J, ZHANG H, WANG H, et al. Functional validation of cadherin as a receptor of Bt toxin Cry1Ac in Helicoverpa armigera utilizing the CRISPR/Cas9 system [J]. Insect Biochem Mol Biol, 2016, 76: 11 − 17. doi:  10.1016/j.ibmb.2016.06.008
[68] WANG J, WANG H, LIU S, et al. CRISPR/Cas9 mediated genome editing of Helicoverpa armigera with mutations of an ABC transporter gene HaABCA2 confers resistance to Bacillus thuringiensis Cry2A toxins [J]. Insect Biochem Mol Biol, 2017, 87: 147 − 153. doi:  10.1016/j.ibmb.2017.07.002
[69] JIN M H, TAO J H, LI Q, et al. Genome editing of the SfABCC2 gene confers resistance to Cry1F toxin from Bacillus thuringiensis in Spodoptera frugiperda [J]. J Integr Agr, 2021, 20(3): 815 − 820. doi:  10.1016/S2095-3119(19)62772-3
[70] TROCZKA B J, WILLIAMSON M S, FIELD L M, et al. Rapid selection for resistance to diamide insecticides in Plutella xylostella via specific amino acid polymorphisms in the ryanodine receptor [J]. Neurotoxicology, 2017, 60: 224 − 233. doi:  10.1016/j.neuro.2016.05.012
[71] TROCZKA B, ZIMMER C T, ELIAS J, et al. Resistance to diamide insecticides in diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) is associated with a mutation in the membrane-spanning domain of the ryanodine receptor [J]. Insect Biochem Mol Biol, 2012, 42(11): 873 − 880. doi:  10.1016/j.ibmb.2012.09.001
[72] ZUO Y, WANG H, XU Y, et al. CRISPR/Cas9 mediated G4946E substitution in the ryanodine receptor of Spodoptera exigua confers high levels of resistance to diamide insecticides [J]. Insect Biochem Mol Biol, 2017, 89: 79 − 85. doi:  10.1016/j.ibmb.2017.09.005
[73] FLEISCHER J, PREGITZER P, BREER H, et al. Access to the odor world: olfactory receptors and their role for signal transduction in insects [J]. Cell Mol Life Sci, 2018, 75(3): 485 − 508. doi:  10.1007/s00018-017-2627-5
[74] 刘伟, 王桂荣. 昆虫嗅觉中枢系统对外周信号的整合编码研究进展[J]. 昆虫学报, 2020, 63(12): 1536 − 1545. doi:  10.16380/j.kcxb.2020.12.012
[75] GARCZYNSKI S F, MARTIN J A, GRISET M, et al. CRISPR/Cas9 editing of the codling moth (Lepidoptera: Tortricidae) CpomOR1 gene affects egg production and viability [J]. J Econ Entomol, 2017, 110(4): 1847 − 1855. doi:  10.1093/jee/tox166
[76] FANDINO R A, HAVERKAMP A, BISCH-KNADEN S, et al. Mutagenesis of odorant coreceptor Orco fully disrupts foraging but not oviposition behaviors in the hawkmoth Manduca sexta [J]. Proc Natl Acad Sci U S A, 2019, 116(31): 15677 − 15685. doi:  10.1073/pnas.1902089116
[77] YE Z F, LIU X L, HAN Q, et al. Functional characterization of PBP1 gene in Helicoverpa armigera (Lepidoptera: Noctuidae) by using the CRISPR/Cas9 system [J]. Sci Rep, 2017, 7(1): 8470. doi:  10.1038/s41598-017-08769-2
[78] ZHU G H, XU J, CUI Z, et al. Functional characterization of SlitPBP3 in Spodoptera litura by CRISPR/Cas9 mediated genome editing [J]. Insect Biochem Mol Biol, 2016: 1 − 9.
[79] XU X, BI H, WANG Y, et al. Disruption of the ovarian serine protease (Osp) gene causes female sterility in Bombyx mori and Spodoptera litura [J]. Pest Manag Sci, 2020, 76(4): 1245 − 1255. doi:  10.1002/ps.5634
[80] XU X, WANG Y, BI H, et al. Mutation of the seminal protease gene, serine protease 2, results in male sterility in diverse lepidopterans [J]. Insect Biochem Mol Biol, 2019, 116: 103243.
[81] MARKERT M J, ZHANG Y, ENUAMEH M S, et al. Genomic access to monarch migration using talen and CRISPR/Cas9-mediated targeted mutagenesis [J]. G3 (Bethesda), 2016, 6(4): 905 − 915. doi:  10.1534/g3.116.027029
[82] XUE Z, REN M, WU M, et al. Efficient gene knock-out and knock-in with transgenic Cas9 in Drosophila [J]. G3 (Bethesda), 2014, 4(5): 925 − 929. doi:  10.1534/g3.114.010496
[83] ZIMMER C T, GARROOD W T, PUINEAN A M, et al. A CRISPR/Cas9 mediated point mutation in the alpha 6 subunit of the nicotinic acetylcholine receptor confers resistance to spinosad in Drosophila melanogaster [J]. Insect Biochem Mol Biol, 2016, 73: 62 − 69. doi:  10.1016/j.ibmb.2016.04.007
[84] LAMB A M, WALKER E A, WITTKOPP P J. Tools and strategies for scarless allele replacement in Drosophila using CRISPR/Cas9 [J]. Fly (Austin), 2017, 11(1): 53 − 64. doi:  10.1080/19336934.2016.1220463
[85] CASINI A, OLIVIERI M, PETRIS G, et al. A highly specific SpCas9 variant is identified by in vivo screening in yeast [J]. Nat Biotechnol, 2018, 36(3): 265 − 271. doi:  10.1038/nbt.4066
[86] KIM E, KOO T, PARK S W, et al. in vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni [J]. Nat Commun, 2017, 8: 14500. doi:  10.1038/ncomms14500
[87] TANING C N T, VAN EYNDE B, YU N, et al. CRISPR/Cas9 in insects: Applications, best practices and biosafety concerns [J]. J Insect Physiol, 2017, 98: 245 − 257. doi:  10.1016/j.jinsphys.2017.01.007
[88] CAGLIARI D, SMAGGHE G, ZOTTI M, et al. RNAi and CRISPR/Cas9 as functional genomics tools in the neotropical stink bug, Euschistus heros [J]. Insects, 2020, 11(12): 838. doi:  10.3390/insects11120838
[89] GILBERT L A, HORLBECK M A, ADAMSON B, et al. Genome-scale CRISPR-mediated control of gene repression and activation [J]. Cell, 2014, 159(3): 647 − 661. doi:  10.1016/j.cell.2014.09.029
[90] PATTANAYAK V, LIN S, GUILINGER J P, et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity [J]. Nat Biotechnol, 2013, 31(9): 839 − 843. doi:  10.1038/nbt.2673
[91] GASIUNAS G, BARRANGOU R, HORVATH P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria [J]. Proc Natl Acad Sci U S A, 2012, 109(39): 2579 − 2586.
[92] QI L S, LARSON M H, GILBERT L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression [J]. Cell, 2013, 152(5): 1173 − 1183. doi:  10.1016/j.cell.2013.02.022
[93] HILTON I B, D'IPPOLITO A M, VOCKLEY C M, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers [J]. Nat Biotechnol, 2015, 33(5): 510 − 517. doi:  10.1038/nbt.3199
[94] LIU X S, WU H, JI X, et al. Editing DNA methylation in the mammalian genome [J]. Cell, 2016, 167(1): 233 − 247. doi:  10.1016/j.cell.2016.08.056
[95] O'GEEN H, REN C, NICOLET C M, et al. dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression [J]. Nucleic Acids Res, 2017, 45(17): 9901 − 9916. doi:  10.1093/nar/gkx578
[96] NISHIMASU H, CONG L, YAN W X, et al. Crystal structure of Staphylococcus aureus Cas9 [J]. Cell, 2015, 162(5): 1113 − 1126. doi:  10.1016/j.cell.2015.08.007
[97] RAN F A, CONG L, YAN W X, et al. in vivo genome editing using Staphylococcus aureus Cas9 [J]. Nature, 2015, 520(7546): 186 − 191. doi:  10.1038/nature14299
[98] MA S, LIU Y, LIU Y, et al. An integrated CRISPR Bombyx mori genome editing system with improved efficiency and expanded target sites [J]. Insect Biochem Mol Biol, 2017, 83: 13 − 20. doi:  10.1016/j.ibmb.2017.02.003
[99] GUO M, REN K, ZHU Y, et al. Structural insights into a high fidelity variant of SpCas9 [J]. Cell Res, 2019, 29(3): 183 − 192. doi:  10.1038/s41422-018-0131-6
[100] HU J H, MILLER S M, GEURTS M H, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity [J]. Nature, 2018, 556(7699): 57 − 63. doi:  10.1038/nature26155
[101] REN X, YANG Z, XU J, et al. Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila [J]. Cell Rep, 2014, 9(3): 1151 − 1162. doi:  10.1016/j.celrep.2014.09.044
[102] GAGNON J A, VALEN E, THYME S B, et al. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs [J]. PLoS One, 2014, 9(5): e98186. doi:  10.1371/journal.pone.0098186
[103] FU Y, SANDER J D, REYON D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs [J]. Nat Biotechnol, 2014, 32(3): 279 − 284. doi:  10.1038/nbt.2808
[104] KLEINSTIVER B P, PATTANAYAK V, PREW M S, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 2016; 529(7587): 490-495.
[105] ZHANG L L, REED R D. A practical guide to CRISPR/Cas9 genome editing in Lepidoptera[M]//Diversity and evolution of butterfly wing patterns. Springer, Singapore, 2017: 155-172.
[106] RODRIGUEZ D C, MACIAS V M, HUGHES G L, et al. Targeted delivery of CRISPR-Cas9 ribonucleoprotein into arthropod ovaries for heritable germline gene editing [J]. Nat Commun, 2018, 9(1): 3008. doi:  10.1038/s41467-018-05425-9
[107] WU J, PENG H, LU X, et al. Binding-mediated formation of ribonucleoprotein corona for efficient delivery and control of CRISPR/Cas9 [J]. Angew Chem Int Ed Engl, 2021, 60(20): 11104 − 11109. doi:  10.1002/anie.202014162
[108] SVITASHEV S, SCHWARTZ C, LENDERTS B, et al. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes [J]. Nat Commun, 2016, 7: 13274. doi:  10.1038/ncomms13274
[109] XU Y, VISWANATHA R, SITSEL O, et al. CRISPR screens in Drosophila cells identify Vsg as a Tc toxin receptor [J]. Nature, 2022, 610(7931): 349 − 355. doi:  10.1038/s41586-022-05250-7
[110] VISWANATHA R, LI Z C, HU Y H, et al. Pooled genome-wide CRISPR screening for basal and context-specific fitness gene essentiality in Drosophila cells [J]. Elife, 2018, 7: e36333. doi:  10.7554/eLife.36333
[111] CHAMPER J, BUCHMAN A, AKBARI O S. Cheating evolution: engineering gene drives to manipulate the fate of wild populations [J]. Nat Rev Genet, 2016, 17(3): 146 − 159. doi:  10.1038/nrg.2015.34
[112] BURT A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations [J]. Proc Biol Sci, 2003, 270(1518): 921 − 928. doi:  10.1098/rspb.2002.2319
[113] GANTZ V M, BIER E. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations [J]. Science, 2015, 348(6233): 442 − 444. doi:  10.1126/science.aaa5945
[114] HAMMOND A, GALIZI R, KYROU K, et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae [J]. Nat Biotechnol, 2016, 34(1): 78 − 83. doi:  10.1038/nbt.3439
[115] ALPHEY L. Can CRISPR-Cas9 gene drives curb malaria [J]. Nat Biotechnol, 2016, 34(2): 149 − 150. doi:  10.1038/nbt.3473