[1] |
HU K G, REICHERT H, STARK W S. Electrophysiological characterization of Drosophila ocelli [J]. Journal of Comparative Physiology A, 1987, 126(1): 15 − 24. |
[2] |
BRISCOE A D. Six opsins from the butterfly Papilio glaucus: molecular phylogenetic evidence for paralogous origins of red-sensitive visual pigments in insects [J]. Journal of Molecular Evolution, 2000, 51(2): 110 − 121. doi: 10.1007/s002390010071 |
[3] |
BRISCOE A D, BYBEE S M, BERNARD G D, et al. Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies [J]. PNAS, 2010, 107(8): 3628 − 3633. doi: 10.1073/pnas.0910085107 |
[4] |
FEUDA R, MARLéTAZ F, BENTLEY M A, et al. Conservation, duplication, and divergence of five opsin genes in insect evolution [J]. Genome Biol Evol, 2016, 8(3): 579 − 587. doi: 10.1093/gbe/evw015 |
[5] |
段云, 吴仁海, 苗进, 等. 昆虫视蛋白的研究进展[J]. 植物保护, 2020, 46(1): 93 − 100. doi: 10.16688/j.zwbh.2019005 |
[6] |
BUCZYLKO J, SAARI J C, CROUCH R K, et al. Mechanisms of opsin activation [J]. Journal of Biological Chemistry, 1996, 271(34): 20621 − 20630. doi: 10.1074/jbc.271.34.20621 |
[7] |
闫硕, 张青文, 熊晓菲, 等. 小地老虎UV视蛋白基因的克隆及序列分析[J]. 动物学杂志, 2012, 47(1): 1 − 8. doi: 10.13859/j.cjz.2012.01.006 |
[8] |
NI J D, BAIK L S, HOLMES T C, et al. A rhodopsin in the brain functions in circadian photoentrainment in Drosophila [J]. Nature, 2017, 545(7654): 340 − 344. doi: 10.1038/nature22325 |
[9] |
高正辉, 王婉强, 朱芬. 昆虫的视蛋白基因研究进展[J]. 华中昆虫研究, 2019(1): 18 − 25. |
[10] |
LYTHGOE J N. The ecology of vision[M] . Oxford: Clarendon Press, 1979. |
[11] |
FRENTIU F D, BERNARD G D, SISON-MANGUS M P, et al. Gene duplication is an evolutionary mechanism for expanding spectral diversity in the long-wavelength photopigments of butterflies [J]. Mol Biol Evol, 2007, 24(9): 2016 − 2028. |
[12] |
BEHNIA R, DESPLAN C. Visual circuits in flies: beginning to see the whole picture [J]. Curr Opin Neurobiol, 2015, 34: 125 − 132. doi: 10.1016/j.conb.2015.03.010 |
[13] |
O'TOUSA J E, BAEHR W, MARTIN R L, et al. The Drosophila ninaE gene encodes an opsin [J]. Cell, 1985, 40(4): 839 − 850. doi: 10.1016/0092-8674(85)90343-5 |
[14] |
ZUKER C S, MONTELL C, JONES K, et al. A rhodopsin gene expressed in photoreceptor cell R7 of the Drosophila eye: homologies with other signal-transducing molecules [J]. J Neurosci, 1987, 7(5): 1550 − 1557. doi: 10.1523/JNEUROSCI.07-05-01550.1987 |
[15] |
FRYXELL K J, MEYEROWITZ E M. An opsin gene that is expressed only in the R7 photoreceptor cell of Drosophila [J]. EMBO J, 1987, 6(2): 443 − 451. doi: 10.1002/j.1460-2075.1987.tb04774.x |
[16] |
FORTINI M E, RUBIN G M. Analysis of cis-acting requirements of the Rh3 and Rh4 genes reveals a bipartite organization to rhodopsin promoters in Drosophila melanogaster [J]. Genes & Development, 1990, 4(3): 444 − 463. doi: 10.1101/gad.4.3.444 |
[17] |
CHOU W H, HALL K J, WILSIN D B, et al. Identification of a novel Drosophila opsin reveals specific patterning of the R7 and R8 photoreceptor cells [J]. Neuron, 1996, 17(6): 1101 − 1115. doi: 10.1016/S0896-6273(00)80243-3 |
[18] |
SALCEDO E, HUBER A, HENRICH S, et al. Blue-and green-absorbing visual pigments of Drosophila: ectopic expression and physiological characterization of the R8 photoreceptor cell-specific Rh5 and Rh6 rhodopsins [J]. J Neurosci, 1999, 9(24): 10716 − 10726. |
[19] |
PAPATSENKO D, SHENG G, DESPLAN C. A new rhodopsin in R8 photoreceptors of Drosophila: evidence for coordinate expression with Rh3 in R7 cells [J]. Development, 1997, 124(9): 1665 − 1673. doi: 10.1242/dev.124.9.1665 |
[20] |
FRANCESCHINI N, KIRSCHFELD K, MINKE B. Fluorescence of photoreceptor cells observed in vivo [J]. Science, 1981, 213(4513): 1264 − 1267. doi: 10.1126/science.7268434 |
[21] |
COWMAN A F, ZUKER C S, RUBIN G M. An opsin gene expressed in only one photoreceptor cell type of the Drosophila eye [J]. Cell, 1986, 44(5): 705 − 710. doi: 10.1016/0092-8674(86)90836-6 |
[22] |
FEILER R, HARRIS W A, KIRSCHFELD K, et al. Targeted misexpression of a Drosophila opsin gene leads to altered visual function [J]. Nature, 1988, 333(6175): 737 − 741. doi: 10.1038/333737a0 |
[23] |
POLLOCK J A, BENZER S. Transcript localization of four opsin genes in the three visual organs of Drosophila; RH2 is ocellus specific [J]. Nature, 1988, 333(6175): 779 − 782. doi: 10.1038/333779a0 |
[24] |
GUO S K, CAO L J, SONG W, et al. Chromosome-level assembly of the melon thrips genome yields insights into evolution of a sap-sucking lifestyle and pesticide resistance [J]. Mol Ecol Resour, 2020, 20(4): 1110 − 1125. doi: 10.1111/1755-0998.13189 |
[25] |
ROTENBERG D, BAUMANN A A, BEN-MAHMOUD S, et al. Genome-enabled insights into the biology of thrips as crop pests [J]. BMC Biol, 2020, 18(1): 169. doi: 10.1186/s12915-020-00862-9 |
[26] |
VELARDE R A, SAUER C D, WALDEN K K O, et al. Pteropsin: a vertebrate-like non-visual opsin expressed in the honey bee brain [J]. Insect Biochem Mol Biol, 2005, 35(12): 1367 − 1377. doi: 10.1016/j.ibmb.2005.09.001 |
[27] |
WAKAKUWA M, STAVENGA D G, ARIKAWA K. Spectral organization of ommatidia in flower-visiting insects [J]. Photochemistry and Photobiology, 2007, 83(1): 27 − 34. doi: 10.1562/2006-03-03-IR-831 |
[28] |
JACKOWASKA M, BAO R, LIU Z, et al. Genomic and gene regulatory signatures of cryptozoic adaptation: Loss of blue sensitive photoreceptors through expansion of long wavelength-opsin expression in the red flour beetle Tribolium castaneum [J]. Frontiers in Zoology, 2007, 4: 24. |
[29] |
COLBOURNE J K, PFRENDER M E, GILBERT D, et al. The ecoresponsive genome of Daphnia pulex [J]. Science, 2011, 331(6017): 555 − 561. doi: 10.1126/science.1197761 |
[30] |
KASHIYAMA K, SEKI T, NUMATA H, et al. Molecular characterization of visual pigments in Branchiopoda and the evolution of opsins in Arthropoda [J]. Mol Biol Evol, 2009, 26(2): 299 − 311. doi: 10.1093/molbev/msn251 |
[31] |
OAKLEY T H, HUBER D R. Differential expression of duplicated opsin genes in two eye types of ostracod crustaceans [J]. J Mol Evol, 2004, 59(2): 239 − 249. doi: 10.1007/s00239-004-2618-7 |
[32] |
PORTER M L, BOK M J, ROBINSON P R, et al. Molecular diversity of visual pigments in Stomatopoda (Crustacea) [J]. Vis Neurosci, 2009, 26(3): 255 − 265. doi: 10.1017/S0952523809090129 |
[33] |
RAJKUMAR P, ROLLMANN S M, COOK T A, et al. Molecular evidence for color discrimination in the Atlantic sand fiddler crab, Uca pugilator [J]. J Exp Biol, 2010, 213(Pt24): 4240 − 4248. doi: 10.1242/jeb.051011 |
[34] |
SMITH W C, MILAM A H, DUGGER D, et al. A splice variant of arrestin. Molecular cloning and localization in bovine retina [J]. J Biol Chem, 1994, 269(22): 15407 − 15410. doi: 10.1016/S0021-9258(17)40691-0 |
[35] |
KOYANAGI M, NANATA T, KATOH K, et al. Molecular evolution of arthropod color vision deduced from multiple opsin genes of jumping spiders [J]. J Mol Evol, 2008, 66(2): 130 − 137. doi: 10.1007/s00239-008-9065-9 |
[36] |
唐良德, 韩云, 吴建辉, 等. 豆大蓟马室内对不同颜色及光波的趋性反应[J]. 植物保护, 2015, 41(6): 169 − 172. doi: 10.3969/j.issn.0529-1542.2015.06.031 |
[37] |
郑建武.中国蓟马族的分类研究(缨翅目: 蓟马科)[D] . 杨凌; 西北农林科技大学, 2019. |
[38] |
杨波, 王晓双, 周镇, 等. 不同化蛹基质对普通大蓟马蛹期、羽化率及性比的影响[J]. 华南农业大学学报, 2019, 40(4): 47 − 51. doi: 10.7671/j.issn.1001-411X.201808031 |
[39] |
范咏梅, 童晓立, 高良举, 等. 普通大蓟马在海南豇豆上的空间分布型[J]. 环境昆虫学报, 2013, 35(6): 737 − 743. |
[40] |
唐良德, 赵海燕, 付步礼, 等. 海南普通大蓟马抗药性监测及对6种杀虫剂的敏感性[J]. 环境昆虫学报, 2018, 40(5): 1175 − 1181. |
[41] |
黄伟康, 孔祥义, 柯用春, 等. 普通大蓟马的研究进展[J]. 中国蔬菜, 2018(2): 21 − 27. doi: 10.19928/j.cnki.1000-6346.2018.02.005 |
[42] |
杨磊, 邵雨, 李芬, 等. 缨翅目害虫蓟马生物防治的研究进展[J]. 中国生物防治学报, 2021, 37(3): 393 − 405. |
[43] |
潘雪莲, 杨磊, 金海峰, 等. 豆大蓟马在海南发生及防治的研究进展[J]. 热带生物学报, 2021, 12(4): 508 − 513. doi: 10.15886/j.cnki.rdswxb.2021.04.014 |
[44] |
FU B L, TAO M, XUE H, et al. Spinetoram resistance drives interspecific competition between Megalurothrips usitatus and Frankliniella intonsa [J]. Pest Management Science, 2022, 78(6): 2129 − 2140. doi: 10.1002/ps.6839 |
[45] |
邱海燕, 刘奎, 李鹏, 等. 黄、蓝色板对豆大蓟马的诱集效果比较[J]. 中国园艺文摘, 2015, 31(1): 50 − 52. doi: 10.3969/j.issn.1672-0873.2015.01.020 |
[46] |
闫凯莉, 唐良德, 吴建辉. 普通大蓟马对不同颜色的趋性及日节律调查[J]. 应用昆虫学报, 2017, 54(4): 639 − 645. doi: 10.7679/j.issn.2095-1353.2017.078 |
[47] |
REN X, WU S, XING Z, et al. Behavioral responses of western flower thrips (Frankliniella occidentalis) to visual and olfactory cues at short distances [J]. Insects, 2020, 11(3): 177. doi: 10.3390/insects11030177 |
[48] |
LOPEZ-REYES K, ARMSTRONG K F, VAN TOL R W H M, et al. Colour vision in thrips (Thysanoptera) [J]. Philos Trans R Soc Lond B Biol Sci, 2022, 377(1862): 20210282. doi: 10.1098/rstb.2021.0282 |
[49] |
HENZE M J, OAKLEY T H. The Dynamic evolutionary history of Pancrustacean eyes and opsins [J]. Integr Comp Biol, 2015, 55(5): 830 − 842. doi: 10.1093/icb/icv100 |
[50] |
CRONIN T W, BOK M J. Photoreception and vision in the ultraviolet [J]. J Exp Biol, 2016, 219(Pt18): 2790 − 2801. doi: 10.1242/jeb.128769 |
[51] |
BORST A. Drosophila's view on insect vision [J]. Curr Biol, 2009, 19(1): R36 − R47. doi: 10.1016/j.cub.2008.11.001 |
[52] |
KOMADA S, KAMAE Y, KOYANAGI M, et al. Green-sensitive opsin is the photoreceptor for photic entrainment of an insect circadian clock [J]. Zoological Letters, 2015, 1: 11. |
[53] |
杨小凡, 魏国树, 马爱红, 等. 昆虫紫外视觉研究进展[J]. 植物保护学报, 2022, 49(1): 131 − 145. |
[54] |
PORTER M L, BLASIC J R, BOK M J, et al. Shedding new light on opsin evolution [J]. Proc Biol Sci, 2012, 279(1726): 3 − 14. |