[1] LAIKOWSKI M M, REISDORFER F, MOURA S. NAChR α4β2 subtype and their relation with nicotine addiction, cognition, depression and hyperactivity disorder [J]. Current Medicinal Chemistry, 2019, 26(20): 3792 − 811. doi:  10.2174/0929867325666180410105135
[2] AUBIN H, LUQUIENS A, BERLIN I. Pharmacotherapy for smoking cessation: pharmacological principles and clinical practice [J]. British Journal of Clinical Pharmacology, 2014, 77(2): 324 − 336. doi:  10.1111/bcp.12116
[3] WEST R, BAKER C L, CAPPELLERI J C, et al. Effect of varenicline and bupropion SR on craving, nicotine withdrawal symptoms, and rewarding effects of smoking during a quit attempt [J]. Psychopharmacology, 2008, 197(3): 371 − 377. doi:  10.1007/s00213-007-1041-3
[4] MONARREZESPINO J, GALANTI M R, HANSSON J, et al. Treatment with bupropion and varenicline for smoking cessation and the risk of acute cardiovascular events and injuries: a Swedish case-crossover study [J]. Nicotine & Tobacco Research, 2018, 20(5): 606 − 613.
[5] LIU X, PALMATIER M I, CAGGIULA A R, et al. Reinforcement enhancing effect of nicotine and its attenuation by nicotinic antagonists in rats [J]. Psychopharmacology, 2007, 194(4): 463 − 473. doi:  10.1007/s00213-007-0863-3
[6] TOBEY K M, WALENTINY D M, WILEY J L, et al. Effects of the specific α4β2 nAChR antagonist, 2-fluoro-3-(4-nitrophenyl) deschloroepibatidine, on nicotine reward-related behaviors in rats and mice [J]. Psychopharmacology, 2012, 223(2): 159 − 168. doi:  10.1007/s00213-012-2703-3
[7] JIN A, VETTER I, HIMAYA S W A, et al. Transcriptome and proteome of Conus planorbis identify the nicotinic receptors as primary target for the defensive venom [J]. Proteomics, 2015, 15: 4030 − 4040. doi:  10.1002/pmic.201500220
[8] MIR R, KARIM S, KAMAL M A, et al. Conotoxins: Structure, therapeutic potential and pharmacological applications [J]. Current Pharmaceutical Design, 2016, 22(5): 582 − 589. doi:  10.2174/1381612822666151124234715
[9] FANG G, CHEN X, YANG Q, et al. Discovery, structure, and chemical synthesis of disulfide-rich peptide toxins and their analogs [J]. Chinese Chemical Letters, 2018, 29(7): 1033 − 1042. doi:  10.1016/j.cclet.2018.02.002
[10] WU J, CIPPITELLI A, ZHANG Y, et al. Highly selective and potent α4β2 nAChR antagonist inhibits nicotine self-administration and reinstatement in rats [J]. Journal of Medicinal Chemistry, 2017, 60(24): 10092 − 10104. doi:  10.1021/acs.jmedchem.7b01250
[11] MILLS E J, WU P, LOCKHART I, et al. Comparisons of high-dose and combination nicotine replacement therapy, varenicline, and bupropion for smoking cessation: A systematic review and multiple treatment meta-analysis [J]. Annals of Medicine, 2012, 44(6): 588 − 597. doi:  10.3109/07853890.2012.705016
[12] HARVEY A L. Toxins and drug discovery [J]. Toxicon, 2014, 92: 193 − 200. doi:  10.1016/j.toxicon.2014.10.020
[13] MILJANICH G P. Ziconotide: Neuronal calcium channel blocker for treating severe chronic pain [J]. Current Medicinal Chemistry, 2004, 11(23): 3029 − 3040. doi:  10.2174/0929867043363884
[14] CINCIRIPINI P M, ROBINSON J D, KARAMHAGE M, et al. Effects of varenicline and bupropion sustained-release use plus intensive smoking cessation counseling on prolonged abstinence from smoking and on depression, negative affect, and other symptoms of nicotine withdrawal [J]. JAMA Psychiatry, 2013, 70(5): 522 − 533. doi:  10.1001/jamapsychiatry.2013.678
[15] ROLLEMA H, SHRIKHANDE A, WARD K M, et al. Preclinical properties of the α4β2 nAChR partial agonists varenicline, cytisine and dianicline translate to clinical efficacy for nicotine dependence [J]. Biochemical Pharmacology, 2009, 78(7): 918 − 919.
[16] AKONDI K B, MUTTENTHALER M, DUTERTRE S, et al. Discovery, synthesis, and structure: activity relationships of conotoxins [J]. Chemical Reviews, 2014, 114(11): 5815 − 5847. doi:  10.1021/cr400401e
[17] XU X, XU Q, CHEN F, et al. Role of the disulfide bond on the structure and activity of μ-conotoxin PⅢA in the inhibition of NaV1.4 [J]. RSC Advances, 2019, 9(2): 668 − 674. doi:  10.1039/C8RA06103C
[18] LEWIS R J, DUTERTRE S, VETTER I, et al. Conus venom peptide pharmacology [J]. Pharmacological Reviews, 2012, 64(2): 259 − 298. doi:  10.1124/pr.111.005322
[19] VETTER I, LEWIS R J. Therapeutic potential of cone snail venom peptides (conopeptides) [J]. Current Topics in Medicinal Chemistry, 2012, 12(14): 1546 − 1552. doi:  10.2174/156802612802652457
[20] PRASHANTH J R, BRUST A, JIN A, et al. Cone snail venomics: from novel biology to novel therapeutics [J]. Future Medicinal Chemistry, 2014, 6(15): 1659 − 1675. doi:  10.4155/fmc.14.99
[21] BULAJ G, OLIVERA B M. Folding of conotoxins: Formation of the native disulfide bridges during chemical synthesis and biosynthesis of conus peptides [J]. Antioxidants & Redox Signaling, 2008, 10(1): 141 − 155.
[22] ROLLEMA H, HURST R S. The contribution of agonist and antagonist activities of α4β2* nAChR ligands to smoking cessation efficacy: a quantitative analysis of literature data [J]. Psychopharmacology, 2018, 235(9): 2479 − 2505. doi:  10.1007/s00213-018-4921-9
[23] KAAS Q, YU R, JIN A H, et al. ConoServer: Updated content, knowledge, and discovery tools in the conopeptide database [J]. Nucleic Acids Research, 2011, 40(D1): D325 − D330.
[24] LUO S, ZHU X, WU Y, et al. Conotoxins and drug discovery with special reference to Hainan species [M]//GOPALAKRISHNAKONE P. Toxins and Drug Discovery. Dordrecht: Springer Netherlands. 2015: 1 − 39.
[25] LLUISMA A O, LOPEZVERA E, BULAJ G, et al. Characterization of a novel ψ-conotoxin from Conus parius Reeve [J]. Toxicon, 2008, 51(2): 174 − 80. doi:  10.1016/j.toxicon.2007.07.009
[26] ABRAHAM N, LEWIS R J. Neuronal nicotinic acetylcholine receptor modulators from cone snails [J]. Marine Drugs, 2018, 16(6): 208. doi:  10.3390/md16060208
[27] VAN WAGONER R M, JACOBSEN R B, OLIVERA B M, et al. Characterization and three-dimensional structure determination of ψ-conotoxin PⅢf, a novel noncompetitive antagonist of nicotinic acetylcholine receptors, [J]. Biochemistry, 2003, 42(21): 6353 − 6362. doi:  10.1021/bi0272757
[28] LEBBE E K M, GHEQUIRE M G K, PEIGNEUR S, et al. Novel conopeptides of largely unexplored Indo Pacific Conus sp [J]. Marine Drugs, 2016, 14(11): 199. doi:  10.3390/md14110199
[29] JIMENEZ E C, OLIVERA B M. Divergent M- and O-superfamily peptides from venom of fish-hunting Conus parius [J]. Peptides, 2010, 31(9): 1678 − 83. doi:  10.1016/j.peptides.2010.05.020
[30] BEHRENDT R, WHITE P D, OFFER J. Advances in Fmoc solid-phase peptide synthesis [J]. Journal of Peptide Science, 2016, 22(1): 4 − 27. doi:  10.1002/psc.2836
[31] GIRIBALDI J, DUTERTRE S. α-Conotoxins to explore the molecular, physiological and pathophysiological functions of neuronal nicotinic acetylcholine receptors [J]. Neuroscience Letters, 2018, 679: 24 − 34. doi:  10.1016/j.neulet.2017.11.063
[32] CASTRO J, HARRINGTON A C, GARCIACARABALLO S, et al. α-Conotoxin Vc1.1 inhibits human dorsal root ganglion neuroexcitability and mouse colonic nociception via GABAB receptors [J]. Gut, 2017, 66(6): 1083 − 1094. doi:  10.1136/gutjnl-2015-310971
[33] AZAM L, PAPAKYRIAKOU A, ZOURIDAKIS M, et al. Molecular interaction of α-conotoxin RgIA with the rat α9α10 nicotinic acetylcholine receptors [J]. Molecular Pharmacology, 2015, 87(5): 855. doi:  10.1124/mol.114.096511
[34] LUO S, ZHANGSUN D, HARVEY P J, et al. Cloning, synthesis, and characterization of αO-conotoxin GeXIVA, a potent α9α10 nicotinic acetylcholine receptor antagonist [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(30): E4026 − E4035. doi:  10.1073/pnas.1503617112
[35] HOLMES D. The pain drain [J]. Nature, 2016, 535(7611): S2 − 3. doi:  10.1038/535S2a
[36] FU X, WU H, LI J, et al. Efficacy of drug interventions for chemotherapy-induced chronic peripheral neurotoxicity: A network meta-analysis [J]. Frontiers in Neurology, 2017, 8: 223. doi:  10.3389/fneur.2017.00223
[37] DUREK T, CRAIK D J. Therapeutic conotoxins: a US patent literature survey [J]. Expert Opinion on Therapeutic Patents, 2015, 25(10): 1159 − 1173. doi:  10.1517/13543776.2015.1054095
[38] WANG H, LI X, ZHANGSUN D, et al. The α9α10 Nicotinic acetylcholine receptor antagonist αO-conotoxin GeXIVA[1, 2] alleviates and reverses chemotherapy-induced neuropathic pain [J]. Marine Drugs, 2019, 17(5): 265. doi:  10.3390/md17050265