[1] 李争, 熊鹂, 纪志远, 等. 白叶枯病菌和细菌性条斑病菌多样性的TALE效应蛋白调控水稻抗(感)病性机理与利用策略[J]. 中国农业科学, 2013, 46(14): 2894 − 2901. doi:  10.3864/j.issn.0578-1752.2013.14.005
[2] MANSFIELD J, GENIN S, MAGORI S, et al. Top 10 plant pathogenic bacteria in molecular plant pathology [J]. Molecular Plant Pathology, 2012, 13(6): 614 − 629. doi:  10.1111/j.1364-3703.2012.00804.x
[3] 成家壮. 防治水稻白叶枯病药剂的研究[J]. 世界农药, 2008, 30(5): 13 − 15. doi:  10.3969/j.issn.1009-6485.2008.05.003
[4] 郭镁渼, 陈前武, 查俊晖, 等. 50%氧氯化铜防治水稻白叶枯病试验报告[J]. 福建农业, 2014, 2014(9): 162 − 163.
[5] 周艳丽, 李薇, 薛超, 等. 30%壬菌铜微乳剂防治水稻白叶枯病药效试验[J]. 农药, 2014, 53(5): 375 − 376.
[6] 胡雪芳, 梁亮, 张志民, 等. 20%寡聚酸碘对水稻白叶枯病的田间防治效果[J]. 湖北农业科学, 2015, 54,(4): 872 − 874.
[7] 黄家会, 袁川, 徐世林,等. 10%溃枯宁防治水稻白叶枯病试验示范[J]. 农药, 1999, 38(10): 44 − 45.
[8] 鲁传涛, 宋凤仙, 徐小双. 中生菌素防治水稻白叶枯病的应用技术[J]. 农药, 1998, 37(7): 20.
[9] 沈光斌, 周明国. 水稻白叶枯病菌对噻枯唑的抗药性监测[J]. 植物保护, 2002, 28(1): 9 − 11. doi:  10.3969/j.issn.0529-1542.2002.01.002
[10] ZERIOUH H, ROMERO D, GARCÍA-GUTIÉRREZ L, et al. The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits [J]. Molecular Plant-Microbe Interactions, 2011, 24(12): 1540 − 1552. doi:  10.1094/MPMI-06-11-0162
[11] 余小霞, 田健, 伍宁丰. 枯草芽胞杆菌芽胞表面展示外源蛋白的研究进展[J]. 中国农业科技导报, 2013, 15(5): 31 − 38. doi:  10.3969/j.issn.1008-0864.2013.05.05
[12] 崔晓, 徐艳霞, 刘俊杰, 等. 芽孢杆菌在农业生产中的应用[J]. 土壤与作物, 2019, 8(1): 32 − 42. doi:  10.11689/j.issn.2095-2961.2019.01.004
[13] TSUGE K, AKIYAMA T, SHODA M. Cloning sequencing and characterization of the iturin A operon [J]. Journal of Bacteriology, 2001, 183(21): 6265 − 6273. doi:  10.1128/JB.183.21.6265-6273.2001
[14] KOUMOUTSI A, CHEN X H, HENNE A, et al. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42 [J]. Journal of Bacteriology, 2004, 186(4): 1084 − 1096. doi:  10.1128/JB.186.4.1084-1096.2004
[15] NAM J, ALAM S T, KANG K, et al. Anti-staphylococcal activity of a cyclic lipopeptide, C15-bacillomycin D, produced by Bacillus velezensis NST6 [J]. Journal of applied microbiology, 2021, 131(1): 93 − 104.
[16] JI G H, WEI L F, HE Y Q, et al. Biological control of rice bacterial blight by Lysobacter antibioticus strain 13-1 [J]. Biological Control, 2008, 45(3): 288 − 296. doi:  10.1016/j.biocontrol.2008.01.004
[17] XIE S, ZANG H, WU H, et al. Antibacterial effects of volatiles produced by Bacillus strain D13 against Xanthomonas oryzae pv. oryzae [J]. Molecular Plant Pathology, 2018, 19(1): 49 − 58. doi:  10.1111/mpp.12494
[18] WU L, WU H, CHEN L, et al. Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens [J]. Scientific Reports, 2015, 5: 12975. doi:  10.1038/srep12975
[19] JIN P, WANG Y, TAN Z, et al. Antibacterial activity and rice-induced resistance, mediated by C15surfactin A, in controlling rice disease caused by Xanthomonas oryzae pv. oryzae [J]. Pesticide Biochemistry and Physiology, 2020, 169: 104669. doi:  10.1016/j.pestbp.2020.104669
[20] DENG X, LI M, LIU L, et al. Functional analysis of Bucella reveals transcriptional regulation of MarR [J]. Microbial Pathogenesis, 2020, 144: 104201. doi:  10.1016/j.micpath.2020.104201
[21] LI B, DEWEY C N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome [J]. BMC Bioinformatics, 2011, 12: 323. doi:  10.1186/1471-2105-12-323
[22] ROBINSON M D, MCCARTHY D J, SMYTH G K. edgeR: a bioconductor package for differential expression analysis of digital gene expression data [J]. Bioinformatics, 2010, 26(1): 139 − 140.
[23] RUIZ-GARCÍA C, BÉJAR V, MARTÍNEZ-CHECA F, et al. Bacillus velezensis sp. nov.,a surfactant-producing bacterium isolated from the river Vélez in Málaga, southern Spain [J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(1): 191 − 195. doi:  10.1099/ijs.0.63310-0
[24] 孙冰冰, 李伟, 魏军, 等. 生防芽孢杆菌的研究进展[J]. 天津农业科学, 2015, 21(12): 102 − 107. doi:  10.3969/j.issn.1006-6500.2015.12.025
[25] FAN S, TIAN F, LI J, et al. Identification of phenolic compounds that suppress the virulence of Xanthomonas oryzae on rice via the type Ⅲ secretion system [J]. Molecular Plant Pathology, 2017, 18(4): 555 − 568. doi:  10.1111/mpp.12415
[26] LIANG X Y, YU X Y, DONG W X, et al. Two thiadiazole compounds promote rice defense against Xanthomonas oryzae pv. oryzae by suppressing the bacterium′s production of extracellular polysaccharides [J]. Molecular Plant Pathology, 2015, 16(8): 882 − 892. doi:  10.1111/mpp.12248
[27] CHEN X, SUN C, LABORDA P, et al. Melatonin treatment inhibits the growth of Xanthomonas oryzae pv. oryzae [J]. Frontiers in Microbiology, 2018, 9: 2280. doi:  10.3389/fmicb.2018.02280
[28] OHKI R, TATENO K, OKADA Y, et al. A bacitracin-resistant Bacillus subtilis gene encodes a homologue of the membrane-spanning subunit of the Bacillus licheniformis ABC transporter [J]. Journal of Bacteriology, 2003, 185(1): 51 − 59.
[29] BOPARAI J K, SHARMA P K. Mini review on antimicrobial peptides, sources, mechanism and recent applications [J]. Protein and Peptide Letters, 2020, 27(1): 4 − 16.
[30] 万智敏, 向延根, 马小华, 等. rpoB基因不同突变位点结核分枝杆菌利福平体外最小抑菌浓度的变化[J]. 广西医学, 2016, 38(6): 773 − 775.
[31] 岳红妮, 吴宽, 吴云锋, 等. 泡桐丛枝植原体Sec分泌蛋白转运系统3个亚基基因的克隆及蛋白特性分析[J]. 植物保护, 2009, 35(2): 25 − 31. doi:  10.3969/j.issn.0529-1542.2009.02.006