[1] |
SADRAS V O, CALDERINI D F. Preface [M]//Crop Physiology Case Histories for Major Crops. Amsterdam: Elsevier, 2021: xvii-xix. |
[2] |
SUMARDIONO S, JOS B, PUDJIHASTUTI I, et al. Effect of chemical modification, drying method, and drying temperature on baking expansion and the physicochemical properties of cassava starch [J]. Journal of Food Processing and Preservation, 2022, 46(1): e16111. |
[3] |
PITAK L, SIRISOMBOON P, SAENGPRACHATANARUG K, et al. Rapid elemental composition measurement of commercial pellets using line-scan hyperspectral imaging analysis [J]. Energy, 2021, 220: 119698. |
[4] |
CHEN H, TAN C, LIN Z, et al. Quantifying several adulterants of notoginseng powder by near-infrared spectroscopy and multivariate calibration [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 211: 280-286. |
[5] |
JIANG D, QI G, HU G, et al. A residual neural network based method for the classification of tobacco cultivation regions using near-infrared spectroscopy sensors [J]. Infrared Physics & Technology, 2020, 111: 103494. |
[6] |
QIU G, LÜ E, WANG N, et al. Cultivar classification of single sweet corn seed using Fourier transform near-infrared spectroscopy combined with discriminant analysis [J]. Applied Sciences, 2019, 9(8): 1530. |
[7] |
BASATI Z, JAMSHIDI B, RASEKH M, et al. Detection of sunn pest-damaged wheat samples using visible/near-infrared spectroscopy based on pattern recognition [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 203: 308-314. |
[8] |
CHEN H, TAN C, LIN Z, et al. Quantifying several adulterants of notoginseng powder by near-infrared spectroscopy and multivariate calibration [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 211: 280-286. |
[9] |
TALLADA J G, PALACIOS-ROJAS N, ARMSTRONG P R. Prediction of maize seed attributes using a rapid single kernel near infrared instrument [J]. Journal of Cereal Science, 2009, 50(3): 381-387. |
[10] |
SUDARNO, SILALAHI D D, RISMAN T, et al. Rapid determination of oil content in dried-ground oil palm mesocarp and kernel using near infrared spectroscopy [J]. Journal of Near Infrared Spectroscopy, 2017, 25(5): 338-347. |
[11] |
SAHA U, JACKSON D. Analysis of moisture, oil, and fatty acid composition of olives by near-infrared spectroscopy: development and validation calibration models [J]. Journal of the Science of Food and Agriculture, 2018, 98(5): 1821-1831. |
[12] |
ALTIERI G, MATERA A, GENOVESE F, et al. Models for the rapid assessment of water and oil content in olive pomace by near-infrared spectrometry [J]. Journal of the Science of Food and Agriculture, 2020, 100(7): 3236-3245. |
[13] |
ARSLAN M, ZOU X, HU X, et al. Near infrared spectroscopy coupled with chemometric algorithms for predicting chemical components in black goji berries (Lycium ruthenicum Murr.) [J]. Journal of Near Infrared Spectroscopy, 2018, 26(5): 275-286. |
[14] |
JIN X, SHI C, YU C Y, et al. Determination of leaf water content by visible and near-infrared spectrometry and multivariate calibration in Miscanthus [J]. Frontiers in Plant Science, 2017, 8: 721. |
[15] |
HEO S, CHOI J Y, KIM J, et al. Prediction of moisture content in steamed and dried purple sweet potato using hyperspectral imaging analysis [J]. Food Science and Biotechnology, 2021, 30(6): 783-791. |
[16] |
RABANERA J D, GUZMAN J D, YAPTENCO K F. Rapid and Non-destructive measurement of moisture content of peanut (Arachis hypogaea L.) kernel using a near-infrared hyperspectral imaging technique [J]. Journal of Food Measurement and Characterization, 2021, 15(4): 3069-3078. |
[17] |
RAHMAN A, KANDPAL L, LOHUMI S, et al. Nondestructive estimation of moisture content, pH and soluble solid contents in intact tomatoes using hyperspectral imaging [J]. Applied Sciences, 2017, 7(1): 109. |
[18] |
ZOU X, ZHAO J, POVEY M J W, et al. Variables selection methods in near-infrared spectroscopy [J]. Analytica Chimica Acta, 2010, 667(1/2): 14-32. |
[19] |
OZAKI Y, CHRISTY A A, MCCLURE W F. Near-infrared spectroscopy in food science and technology[M]. NewYork: John Wiley & Sons, 2006: 23-25. |
[20] |
FAZELI BURESTAN N, AFKARI SAYYAH A H, SAFI M. Prediction of amylose content, protein content, breakdown, and setback viscosity of Kadus rice and its flour by near-infrared spectroscopy (NIRS) analysis [J]. Journal of Food Processing and Preservation, 2021, 45(1): e15069. |
[21] |
OZAKI Y, HUCK C, TSUCHIKAWA S, et al.. Near-Infrared Spectroscopy: Theory, Spectral Analysis, Instrumentation, and Applications [M]. Singapore: Springer Singapore, 2021: 57-63. |
[22] |
JIAO Y, LI Z, CHEN X, et al. Preprocessing methods for near-infrared spectrum calibration [J]. Journal of Chemometrics, 2020, 34(11): e3306. |
[23] |
LEBOT V, CHAMPAGNE A, MALAPA R, et al. NIR determination of major constituents in tropical root and Tuber crop flours [J]. Journal of Agricultural and Food Chemistry, 2009, 57(22): 10539-10547. |
[24] |
LEBOT V, MALAPA R, JUNG M. Use of NIRS for the rapid prediction of total N, minerals, sugars and starch in tropical root and tuber crops [J]. New Zealand Journal of Crop and Horticultural Science, 2013, 41(3): 144-153. |
[25] |
SÁNCHEZ T, CEBALLOS H, DUFOUR D, et al. Prediction of carotenoids, cyanide and dry matter contents in fresh cassava root using NIRS and Hunter color techniques [J]. Food Chemistry, 2014, 151: 444-451. |
[26] |
李荣. 近红外光谱技术对益智质量评价的研究 [D]. 广州: 广东药科大学, 2020. |
[27] |
MISHRA P, ROGER J M, MARINI F, et al. Parallel pre-processing through orthogonalization (PORTO) and its application to near-infrared spectroscopy [J]. Chemometrics and Intelligent Laboratory Systems, 2021, 212: 104190. |
[28] |
OLIVEIRA U F, COSTA A M, ROQUE J V, et al. Predicting oil content in ripe Macaw fruits (Acrocomia aculeata) from unripe ones by near infrared spectroscopy and PLS regression [J]. Food Chemistry, 2021, 351: 129314. |
[29] |
LIU Y, SUN L, DU C, et al. Near-infrared prediction of edible oil frying times based on Bayesian Ridge Regression[J]. Optics, 2020, 218(12): 164950. |
[30] |
高美凤, 陶焕明. 改进团队进步算法的近红外光谱波长筛选 [J]. 光谱学与光谱分析, 2021, 41(10): 3032-3038. |
[31] |
陶焕明. 光谱波长筛选方法及其在近红外检测中的应用 [D]. 无锡: 江南大学, 2021. |
[32] |
洪士军, 黄雯, 张立国, 等. 基于尺度不变特征变换筛选稳定特征波长的近红外光谱模型传递方法 [J]. 分析测试学报, 2020, 39(10): 1260-1266. |
[33] |
吕晓菡, 蒋锦琳, 杨静, 等. 基于特征波长建模的近红外光谱技术检测辣椒素含量 [J]. 浙江大学学报(农业与生命科学版), 2019, 45(6): 760-766. |