[1] DAS Y T, BAGCHI M, BAGCHI D, et al. Safety of 5-hydroxy-l-tryptophan [J]. Toxicology Letters, 2004, 150(1): 111 − 122. doi:  10.1016/j.toxlet.2003.12.070
[2] ŠVOB ŠTRAC D, PIVAC N, MüCK-ELER D. The serotonergic system and cognitive function [J]. Translational Neuroscience, 2016, 7(1): 35 − 49. doi:  10.1515/tnsci-2016-0007
[3] YE T, YIN X, YU L, et al. Metabolic analysis of the melatonin biosynthesis pathway using chemical labeling coupled with liquid chromatography‐mass spectrometry [J]. Journal of Pineal Research, 2019, 66(1): 12531. doi:  10.1111/jpi.12531
[4] SAMANTA S. Physiological and pharmacological perspectives of melatonin [J]. Archives of Physiology and Biochemistry, 2020, 128(5): 1346 − 1367.
[5] MAFFEI M E. 5-hydroxytryptophan (5-HTP): natural occurrence, analysis, biosynthesis, biotechnology, physiology and toxicology [J]. International Journal of Molecular Sciences, 2021, 22(1): 181.
[6] ADDOTEY J N A, ADOSRAKU R K. Pilot production of 5-HTP from the seeds of Griffonia simplicifolia [J]. World Journal of Pharmacy and Pharmaceutical Sciences, 2016, 5(6): 204 − 221.
[7] 孙日和. 左旋五羟基色氨酸的合成工艺: 200810150448.6[P]. 2008-12-17.
[8] 胡文辉, 唐星, 兰小兵, 等. 一种左旋5-羟基色氨酸的制备方法: 201110272240.3[P]. 2012-02-15.
[9] AURORA MARTíNEZ P M K, HAAVIK J. A structural approach into human tryptophan hydroxylase and its implications for the regulation of serotonin biosynthesis [J]. Current Medicinal Chemistry, 2001, 8(9): 1077 − 1091. doi:  10.2174/0929867013372616
[10] FITZPATRICK, PAUL F. Tetrahydropterin-dependent amino acid hydroxylases [J]. Annual Review of Biochemistry, 1999, 68(1): 355. doi:  10.1146/annurev.biochem.68.1.355
[11] WERNER E R, BLAU N, THöNY B. Tetrahydrobiopterin: biochemistry and pathophysiology [J]. The Biochemical Journal, 2011, 438(3): 397 − 414. doi:  10.1042/BJ20110293
[12] THöNY B, AUERBACH G, BLAU N. Tetrahydrobiopterin biosynthesis, regeneration and functions [J]. Biochemical Journal, 2000, 347(1): 1 − 16. doi:  10.1042/bj3470001
[13] FITZPATRICK P F. The aromatic amino acid hydroxylases [J]. Advances in Enzymology and Related Areas of Molecular Biology, 2000, 74(1): 235 − 294.
[14] KULIKOVA E A, KULIKOV A V. Tryptophan hydroxylase 2 as a therapeutic target for psychiatric disorders: focus on animal models [J]. Expert Opinion on Therapeutic Targets, 2019, 23(8): 655 − 667. doi:  10.1080/14728222.2019.1634691
[15] MORAN G R, DAUBNER S C, FITZPATRICK P F. Expression and characterization of the catalytic core of tryptophan hydroxylase [J]. Journal of Biological Chemistry, 1998, 273(20): 12259 − 12266. doi:  10.1074/jbc.273.20.12259
[16] MCKINNEY J, KNAPPSKOG P M, PEREIRA J, et al. Expression and purification of human tryptophan hydroxylase from Escherichia coli and Pichia pastoris [J]. Protein Expression & Purification, 2004, 33(2): 185 − 194.
[17] WINDAHL M S, PETERSEN C R, CHRISTENSEN H, et al. Crystal structure of tryptophan hydroxylase with bound amino acid substrate [J]. Biochemistry, 2008, 47(46): 12087 − 12094. doi:  10.1021/bi8015263
[18] HIGGINS C A, VERMEER L M, DOORN J A, et al. Expression and purification of recombinant human tyrosine hydroxylase as a fusion protein in Escherichia coli [J]. Protein Expression and Purification, 2012, 84(2): 219 − 223. doi:  10.1016/j.pep.2012.05.007
[19] KINO K, HARA R, NOZAWA A. Enhancement of L-tryptophan 5-hydroxylation activity by structure-based modification of L-phenylalanine 4-hydroxylase from Chromobacterium violaceum [J]. Journal of Bioscience & Bioengineering, 2009, 108(3): 184 − 189.
[20] YAMAMOTO K, KATAOKA E, MIYAMOTO N, et al. Genetic engineering of Escherichia coli for production of tetrahydrobiopterin [J]. Metabolic Engineering, 2003, 5(4): 246 − 254. doi:  10.1016/S1096-7176(03)00046-6
[21] RYOTARO HARA K K. Enhanced synthesis of 5-hydroxy-l-tryptophan through tetrahydropterin regeneration [J]. AMB Express, 2013, 3(1): 70. doi:  10.1186/2191-0855-3-70
[22] KNIGHT E M, ZHU J, FöRSTER J, et al. Microorganisms for the production of 5-hydroxytryptophan: WO 2013/127914 A1[P]. 2013-06-09.
[23] WANG Y, CHEN X, CHEN Q, et al. Construction of cell factory capable of efficiently converting l-tryptophan into 5-hydroxytryptamine [J]. Microbial Cell Factories, 2022, 21(1): 1 − 9. doi:  10.1186/s12934-021-01718-9
[24] NAKATA H, YAMAUCHI T, FUJISAWA H. Phenylalanine hydroxylase from Chromobacterium violaceum. purification and characterization [J]. Journal of Biological Chemistry, 1979, 254(6): 1829 − 1833. doi:  10.1016/S0021-9258(17)37730-X
[25] PRIBAT A, BLABY I K, LARA-NUNEZ A, et al. FolX and FolM are essential for tetrahydromonapterin synthesis in Escherichia coli and Pseudomonas aeruginosa [J]. Journal of Bacteriology, 2010, 192(2): 475 − 482. doi:  10.1128/JB.01198-09
[26] LIN Y, SUN X, YUAN Q, et al. Engineering bacterial phenylalanine 4-hydroxylase for microbial synthesis of human neurotransmitter precursor 5-hydroxytryptophan [J]. Acs Synthetic Biology, 2014, 3(7): 497. doi:  10.1021/sb5002505
[27] JIAN W, CHENG L K, WANG J, et al. Genetic engineering of Escherichia coli to enhance production of L-tryptophan [J]. Applied Microbiology and Biotechnology, 2013, 97(17): 7587 − 7596. doi:  10.1007/s00253-013-5026-3
[28] MORA-VILLALOBOS J-A, ZENG A P. Protein and pathway engineering for the biosynthesis of 5‐hydroxytryptophan in Escherichia coli [J]. Engineering in Life Sciences, 2017, 17(8): 892 − 899. doi:  10.1002/elsc.201700064
[29] IKEDA M. Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering [J]. Applied Microbiology and Biotechnology, 2006, 69(1): 615 − 626.
[30] CHEN L, ZENG A P. Rational design and metabolic analysis of Escherichia coli for effective production of L-tryptophan at high concentration [J]. Applied Microbiology & Biotechnology, 2017, 101(2): 559 − 568.
[31] BOGOSIAN G, SOMERVILLE R L, NISHI K, et al. Transcription of the trpR gene of Escherichia coli: an autogeneously regulated system studied by direct measurements of mRNA levels in vivo [J]. Molecular & General Genetics, 1984, 193(2): 244 − 250.
[32] MORA-VILLALOBOS J-A, ZENG A P. Synthetic pathways and processes for effective production of 5-hydroxytryptophan and serotonin from glucose in Escherichia coli [J]. Journal of Biological Engineering, 2018, 12(1): 3. doi:  10.1186/s13036-018-0094-7
[33] HAIJIAO W, WENQIAN L, FENG S, et al. Metabolic pathway engineering for high-level production of 5-hydroxytryptophan in Escherichia coli [J]. Metabolic Engineering, 2018, 48(1): 279 − 287.
[34] MURPHY K L, ZHANG X, GAINETDINOV R R, et al. A regulatory domain in the N terminus of tryptophan hydroxylase 2 controls enzyme expression [J]. Journal of Biological Chemistry, 2008, 283(9): 13216 − 13224.
[35] NIELSEN M S, PETERSEN C R, MUNCH A, et al. A simple two step procedure for purification of the catalytic domain of chicken tryptophan hydroxylase 1 in a form suitable for crystallization [J]. Protein Expression and Purification, 2008, 57(2): 116 − 126. doi:  10.1016/j.pep.2007.10.016
[36] XU D, FANG M, WANG H, et al. Enhanced production of 5-hydroxytryptophan through the regulation of L-tryptophan biosynthetic pathway [J]. Applied Microbiology and Biotechnology, 2020, 104(6): 2481 − 2488. doi:  10.1007/s00253-020-10371-y
[37] ZHANG J, WU C, SHENG J, et al. Molecular basis of 5-hydroxytryptophan synthesis in Saccharomyces cerevisiae [J]. Molecular BioSystems, 2016, 12(5): 1432 − 1435. doi:  10.1039/C5MB00888C
[38] YAO Z, WANG Q, DAI Z. Recent advances in directed yeast genome evolution [J]. Journal of Fungi (Basel, Switzerland), 2022, 8(6): 635.