[1] LIETH H. Purposes of a phenology book [M]. Berlin Heidelberg: Phenology and Seasonality Modeling. Springer. 1974: 3 − 19.
[2] RICHARDSON A D, KEENAN T F, MIGLIAVACCA M, et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system [J]. Agricultural and Forest Meteorology, 2013, 169: 156 − 173. doi:  10.1016/j.agrformet.2012.09.012
[3] 杨乐. 浙江天童常绿阔叶林植物春季叶物候研究[D]. 上海: 华东师范大学, 2009.
[4] 赵永宏, 赵维俊, 马剑. 祁连山青海云杉物候对水热驱动的响应[J]. 生态学报, 2020, 40(24): 9083 − 9093.
[5] RATHCKE B, LACEY E P. Phenological patterns of terrestrial plants [J]. Annual Review of Ecology and Systematics, 1985: 179 − 214.
[6] FU Y H, PIAO S, ZHAO H, et al. Unexpected role of winter precipitation in determining heat requirement for spring vegetation green‐up at northern middle and high latitudes [J]. Global Change Biology, 2014, 20(12): 3743 − 3455. doi:  10.1111/gcb.12610
[7] 景军. 亚热带常绿阔叶林食叶昆虫和寄主植物物候同步性及其对气候变化的响应[D]. 上海: 华东师范大学, 2015.
[8] MYNENI R B, KEELING C, TUCKER C J, et al. Increased plant growth in the northern high latitudes from 1981 to 1991 [J]. Nature, 1997, 386(6626): 698 − 702. doi:  10.1038/386698a0
[9] PARMESAN C, YOHE G. A globally coherent fingerprint of climate change impacts across natural systems [J]. Nature, 2003, 421(6918): 37 − 42. doi:  10.1038/nature01286
[10] SITCH S, SMITH B, PRENTICE I C, et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model [J]. Global Change Biology, 2003, 9(2): 161 − 185. doi:  10.1046/j.1365-2486.2003.00569.x
[11] 张静, 孙路. 浅谈植物功能性状对气候变化的响应[J]. 南方农业, 2019, 13(14): 150 − 151. doi:  10.19415/j.cnki.1673-890x.2019.14.077
[12] BOLNICK D I, AMARASEKARE P, ARAÚJO M S, et al. Why intraspecific trait variation matters in community ecology [J]. Trends in Ecology & Evolution, 2011, 26(4): 183 − 192.
[13] FAJARDO A, PIPER F I. Intraspecific trait variation and covariation in a widespread tree species (Nothofagus pumilio) in southern Chile [J]. New Phytologist, 2011, 189(1): 259 − 271. doi:  10.1111/j.1469-8137.2010.03468.x
[14] FU Y H, PIAO S, DELPIERRE N, et al. Larger temperature response of autumn leaf senescence than spring leaf‐out phenology [J]. Global Change Biology, 2018, 24(5): 2159 − 2168. doi:  10.1111/gcb.14021
[15] MARON J L, ELMENDORF S C, VILÀ M. Contrasting plant physiological adaptation to climate in the native and introduced range of Hypericum perforatum [J]. Evolution, 2007, 61(8): 1912 − 1924. doi:  10.1111/j.1558-5646.2007.00153.x
[16] LIAO S, DENG Z, CUI K, et al. Genetic diversity of Broussonetia papyrifera populations in southwest China [J]. Genetics and Molecular Research, 2014, 13(3): 7553 − 7563. doi:  10.4238/2014.September.12.22
[17] 杨平, 朱学慧, 姬慧娟, 等, 温度和水分胁迫对构树种子萌发的影响[J]. 四川林业科技, 2015, 36(6): 90−92.
[18] KIKUZAWA K. Leaf phenology as an optimal strategy for carbon gain in plants [J]. Canadian Journal of Botany, 1995, 73(2): 158 − 163. doi:  10.1139/b95-019
[19] 崔思明, 郝亚涵, 周玮, 等. 构树不同种源叶性状变异研究[J]. 中南林业科技大学学报, 2020, 40(5): 104 − 110.
[20] CHUINE I, BELMONTE J, MIGNOT A. A modelling analysis of the genetic variation of phenology between tree populations [J]. Journal of Ecology, 2000: 561 − 570.
[21] DAI J, WANG H, GE Q. The spatial pattern of leaf phenology and its response to climate change in China [J]. International journal of biometeorology, 2014, 58(4): 521 − 528. doi:  10.1007/s00484-013-0679-2
[22] 于裴洋, 同小娟, 李俊, 等, 中国暖温带木本植物物候模拟分析[J]. 北京林业大学学报, 2021, 43(11): 28 − 39.
[23] 陈沁, 唐欣然, 薛乾怀, 等. 亚热带植物春季和秋季物候格局及其对气候变化的响应[J]. 广西植物, 42, 7: 1105 − 1115.
[24] 崔雪娜, 杜彦君, 赵袁, 等. 南亚热带阔叶林展叶物候及其种内种间差异探讨[J]. 广西植物, 2017, 37(3): 322 − 328.
[25] 陶泽兴, 葛全胜, 徐韵佳, 等. 西安和宝鸡木本植物花期物候变化及温度敏感度对比[J]. 生态学报, 2020, 40(11): 123 − 133.
[26] 于裴洋, 同小娟, 李俊, 等, 中国东部暖温带刺槐物候模型比较[J]. 中国农业气象, 2020, 41(10): 609−621.
[27] VICO G, KARACIC A, ADLER A, et al. Consistent poplar clone ranking based on leaf phenology and temperature along a latitudinal and climatic gradient in Northern Europe [J]. BioEnergy Research, 2021, 14(2): 445 − 459. doi:  10.1007/s12155-021-10249-5
[28] FU Y H, ZHAO H, PIAO S, et al. Declining global warming effects on the phenology of spring leaf unfolding [J]. Nature, 2015, 526(7571): 104 − 107. doi:  10.1038/nature15402
[29] LIU Q, FU Y H, ZENG Z, et al. Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China [J]. Global Change Biology, 2016, 22(2): 644 − 655. doi:  10.1111/gcb.13081
[30] BREIMAN L. Random forests [J]. Machine learning, 2001, 45(1): 5 − 32. doi:  10.1023/A:1010933404324
[31] YUE J, YANG G, FENG H. Comparative of remote sensing estimation models of winter wheat biomass based on random forest algorithm [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(18): 175 − 182.
[32] NAM H-K, CHOI S-H, YOO J-C. Patterning waterbird assemblages on rice fields using self-organizing map and random forest [J]. Korean Journal of Environmental Agriculture, 2015, 34(3): 168 − 177. doi:  10.5338/KJEA.2015.34.3.26
[33] SCHABER J, BADECK F-W. Physiology-based phenology models for forest tree species in Germany [J]. International Journal of Biometeorology, 2003, 47(4): 193 − 201. doi:  10.1007/s00484-003-0171-5
[34] VON WUEHLISCH G, KRUSCHE D, MUHS H. Variation in temperature sum requirement for Flushing [J]. Silvae Genetica, 1995, 44: 5 − 6.
[35] DE KORT H, VANDER MIJNSBRUGGE K, VANDEPITTE K, et al. Evolution, plasticity and evolving plasticity of phenology in the tree species Alnus glutinosa [J]. Journal of Evolutionary Biology, 2016, 29(2): 253 − 264. doi:  10.1111/jeb.12777
[36] VITASSE Y, DELZON S, DUFRÊNE E, et al. Leaf phenology sensitivity to temperature in European trees: Do within-species populations exhibit similar responses? [J]. Agricultural and Forest Meteorology, 2009, 149(5): 735 − 744. doi:  10.1016/j.agrformet.2008.10.019
[37] GARONNA I, DE JONG R, DE WIT A J, et al. Strong contribution of autumn phenology to changes in satellite‐derived growing season length estimates across Europe (1982–2011) [J]. Global Change Biology, 2014, 20(11): 3457 − 3470. doi:  10.1111/gcb.12625
[38] KALUTHOTA S, PEARCE D W, EVANS L M, et al. Higher photosynthetic capacity from higher latitude: foliar characteristics and gas exchange of southern, central and northern populations of Populus angustifolia [J]. Tree physiology, 2015, 35(9): 936 − 948. doi:  10.1093/treephys/tpv069
[39] SOOLANAYAKANAHALLY R Y, GUY R D, SILIM S N, et al. Enhanced assimilation rate and water use efficiency with latitude through increased photosynthetic capacity and internal conductance in balsam poplar (Populus balsamifera L. ) [J]. Plant, Cell & Environment, 2009, 32(12): 1821 − 1832.
[40] GORNALL J L, GUY R D. Geographic variation in ecophysiological traits of black cottonwood (Populus trichocarpa) [J]. Botany, 2007, 85(12): 1202 − 1213.
[41] MCKOWN A D, GUY R D, KLÁPŠTĚ J, et al. Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa [J]. New Phytologist, 2014, 201(4): 1263 − 76. doi:  10.1111/nph.12601
[42] POLGAR C A, PRIMACK R B. Leaf‐out phenology of temperate woody plants: from trees to ecosystems [J]. New Phytologist, 2011, 191(4): 926 − 941. doi:  10.1111/j.1469-8137.2011.03803.x
[43] TEZARA W, MITCHELL V, DRISCOLL S, et al. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP [J]. Nature, 1999, 401(6756): 914 − 917. doi:  10.1038/44842
[44] 董晓宇. 2000—2017年内蒙古荒漠草原植被物候和净初级生产力对气候变化的响应[D]. 西安: 长安大学, 2020.
[45] REPO T, ZHANG G, RYYPPö A, et al. The relation between growth cessation and frost hardening in Scots pines of different origins [J]. Trees, 2000, 14(8): 456 − 464. doi:  10.1007/s004680000059
[46] FRIEDMAN J M, ROELLE J E, CADE B S. Genetic and environmental influences on leaf phenology and cold hardiness of native and introduced riparian trees [J]. International Journal of Biometeorology, 2011, 55(6): 775 − 787. doi:  10.1007/s00484-011-0494-6
[47] LINKOSALO T, LECHOWICZ M J. Twilight far-red treatment advances leaf bud burst of silver birch (Betula pendula) [J]. Tree physiology, 2006, 26(10): 1249 − 1256. doi:  10.1093/treephys/26.10.1249
[48] SAXE H, CANNELL M G, JOHNSEN ø, et al. Tree and forest functioning in response to global warming [J]. New phytologist, 2001, 149(3): 369 − 399. doi:  10.1046/j.1469-8137.2001.00057.x
[49] CHMIELEWSKI F-M, RöTZER T. Response of tree phenology to climate change across Europe [J]. Agricultural and Forest Meteorology, 2001, 108(2): 101 − 112. doi:  10.1016/S0168-1923(01)00233-7
[50] MENZEL A, SPARKS T H, ESTRELLA N, et al. European phenological response to climate change matches the warming pattern [J]. Global change biology, 2006, 12(10): 1969 − 1976. doi:  10.1111/j.1365-2486.2006.01193.x
[51] LEBOURGEOIS F, PIERRAT J-C, PEREZ V, et al. Simulating phenological shifts in French temperate forests under two climatic change scenarios and four driving global circulation models [J]. International journal of biometeorology, 2010, 54(5): 563 − 581. doi:  10.1007/s00484-010-0305-5
[52] MORIN X, LECHOWICZ M J, AUGSPURGER C, et al. Leaf phenology in 22 North American tree species during the 21st century [J]. Global Change Biology, 2009, 15(4): 961 − 975. doi:  10.1111/j.1365-2486.2008.01735.x
[53] 回爽. 沈阳城-郊梯度下三种观赏树种的物候特征及影响因素研究[D]. 沈阳: 沈阳农业大学, 2020.
[54] PIAO S, CIAIS P, FRIEDLINGSTEIN P, et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming [J]. Nature, 2008, 451(7174): 49 − 52. doi:  10.1038/nature06444
[55] WHITE A, CANNELL M G, FRIEND A D. Climate change impacts on ecosystems and the terrestrial carbon sink: a new assessment [J]. Global environmental change, 1999, 9: 21 − 30. doi:  10.1016/S0959-3780(99)00016-3
[56] CHMIELEWSKI F-M, MÜLLER A, BRUNS E. Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000 [J]. Agricultural and Forest Meteorology, 2004, 121(1/2): 69 − 78.