[1] COLTELLI M B, WILD F, BUGNICOURT E, et al. State of the art in the development and properties of protein-based films and coatings and their applicability to cellulose based products: An extensive review [J]. Coatings, 2015, 6(1): 1 − 59. doi:  10.3390/coatings6010001
[2] 陈涵, 谭小丹, 张甫生, 等. 魔芋葡甘聚糖胶粒稳定性的构建[J]. 热带生物学报, 2015, 6(4): 460 − 466.
[3] 黄玉. 蛋白−多酚胶体复合物制备油凝胶及其性质研究[D]. 广州: 暨南大学, 2018.
[4] STORTZ T A, ZETZL A K, BARBUT S, et al. Edible oleogels in food products to help maximize health benefits and improve nutritional profiles [J]. Lipid Technology, 2012, 24(7): 151 − 154. doi:  10.1002/lite.201200205
[5] LIMPIMWONG W, KUMRUNGSEE T, KATO N, et al. Rice bran wax oleogel: a potential margarine replacement and its digestibility effect in rats fed a high-fat diet [J]. Journal of Functional Foods, 2017, 39(Supplement C): 250 − 256.
[6] ZULIM B D C, MARANGONI A G, SMITH A K, et al. The potential application of rice bran wax oleogel to replace solid fat and enhance unsaturated fat content in ice cream [J]. Journal of Food Science, 2013, 78(9): 1334 − 1339. doi:  10.1111/1750-3841.12175
[7] PATEL A R, CLUDTS N, BIN S M D, et al. Edible oleogels based on water soluble food polymers: preparation, characterization and potential application [J]. Food & Function, 2014, 5(11): 2833 − 2841.
[8] ZETZL A K, MARANGONI A G, BARBUT S. Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters [J]. Food & Function, 2012, 3(3): 327 − 337.
[9] LIU D, LI Z, Fan Z W, et al. Effect of soybean soluble polysaccharide on the pasting, gels, and rheological properties of kudzu and lotus starches [J]. Food Hydrocolloids, 2019, 89: 443 − 452. doi:  10.1016/j.foodhyd.2018.11.003
[10] COK M, VIOLA M, VECCHIES F, et al. N-isopropyl chitosan. A pH- and thermo-responsive polysaccharide for gel formation [J]. Carbohydrate Polymers, 2020, 23: 1 − 8.
[11] MAO Y, HIROSHI K, ARATA Y, et al. Thermo-reversible supramolecular hydrogels of trehalose-type diblock methylcellulose analogues [J]. Carbohydrate Polymers, 2018, 183: 110 − 122. doi:  10.1016/j.carbpol.2017.12.006
[12] 崔媛. 多糖的化学改性及其水凝胶的敏感性研究[D]. 长春: 长春理工大学, 2013.
[13] NATHDANAI H, KIYOSHI K, TORU S. Impacts of freezing and molecular size on structure, mechanical properties and recrystallization of freeze-thawed polysaccharide gels [J]. LWT - Food Science and Technology, 2016, 68: 190 − 201. doi:  10.1016/j.lwt.2015.12.030
[14] XUAN T L, RIOUX L E, SYLVIE L T. Formation and functional properties of protein-polysaccharide electrostatic hydrogels in comparison to protein or polysaccharide hydrogels [J]. Advances in Colloid and Interface Science, 2017, 2393: 127 − 135.
[15] LIU S C, XIAO Y H, SHEN M Y, et al. Effect of sodium carbonate on the gelation, rheology, texture and structural properties of maize starch-Mesona chinensis polysaccharide gel [J]. Food Hydrocolloids, 2019, 87: 943 − 951. doi:  10.1016/j.foodhyd.2018.09.025
[16] 孙中琦, 王雅立, 赵菲, 等. 魔芋葡甘聚糖凝胶结构研究进展[J]. 中国食品添加剂, 2014(4): 163 − 170. doi:  10.3969/j.issn.1006-2513.2014.04.023
[17] YUAN Y, WANG L, MU R J, et al. Effects of konjac glucomannan on the structure, properties, and drug release characteristics of agarose hydrogels [J]. Carbohydrate Polymers, 2018, 190: 196 − 203. doi:  10.1016/j.carbpol.2018.02.049
[18] WANG L, DU Y, YUAN Y, et al. Mussel-inspired fabrication of konjac glucomannan/microcrystalline cellulose intelligent hydrogel with pH-responsive sustained release behavior [J]. International Journal of Biological Macromolecules, 2018, 1131: 285 − 293.
[19] MONTEIRO S R, SILVA J A L. Effect of the molecular weight of a neutral polysaccharide on soy protein gelation [J]. Food Research International, 2017, 102: 14 − 24. doi:  10.1016/j.foodres.2017.09.066
[20] DU Y, WANG L, MU R J, et al. Fabrication of novel Konjac glucomannan/shellac film with advanced functions for food packaging [J]. International Journal of Biological Macromolecules, 2019, 131: 36 − 42. doi:  10.1016/j.ijbiomac.2019.02.142
[21] GONG J N, WANG L, WU J Y, et al. The rheological and physicochemical properties of a novel thermosensitive hydrogel based on konjac glucomannan/gum tragacanth [J]. LWT, 2019, 100: 271 − 277. doi:  10.1016/j.lwt.2018.10.080
[22] KATSUMI H, YASUYUKI S, MITSUHIRO S. Two-dimensional scattering patterns and stress-strain relation of elongated clay nano composite gels: Molecular dynamics simulation analysis [J]. Polymer, 2018, 154: 62 − 79. doi:  10.1016/j.polymer.2018.08.047
[23] YU D, BIJAY S, BAIK O D. Computer simulation of heat transfer for disinfestation of red flour beetle, Tribolium castaneum (Herbst) in stored canola seeds (Brassica napus L.) by radio frequency heating [J]. Engineering in Agriculture, 2019, 12(3): 297 − 314.
[24] AMIT K T, MACAUL L N, DONALD C S, et al. Influence of n-alkyl ester groups on efficiency of crosslinking for methacrylate monomers copolymerized with EGDMA: Experiments and Monte Carlo simulations of reaction kinetics and sol-gel structure [J]. Polymer, 2016, 96: 130 − 145. doi:  10.1016/j.polymer.2016.04.017
[25] WANG M, YAO M N, JIAN W J, et al. Molecular dynamics simulations of the interactions between konjac glucomannan and soy protein isolate [J]. Agricultural Sciences in China, 2010, 9(10): 1538 − 1542. doi:  10.1016/S1671-2927(09)60248-0
[26] MARANGONI A G, GARTI N. Edible oleogels structure and health implications[M]. Illinois: AOCS Press, 2011: 221 − 234.
[27] 钟金锋, 覃小丽, 刘雄. 凝胶油及其在食品工业中的应用研究进展[J]. 食品科学, 2015, 36(3): 272 − 279. doi:  10.7506/spkx1002-6630-201503051
[28] PATEL A R, RAJARETHINEM P S, CLUDTS N, et al. Biopolymer-based structuring of liquid oil into soft solids and oleogels using water-continuous emulsions as templates [J]. Langmuir, 2015, 31(7): 2065 − 2073. doi:  10.1021/la502829u
[29] GAO Z M, YANG X Q, WU N N, et al. Protein-based Pickering emulsion and oil gel prepared by complexes of zein colloidal particles and stearate [J]. J. Agric Food Chem, 2014, 62(12): 2672 − 2678. doi:  10.1021/jf500005y
[30] ZOU Y, YANG X Q, SCHOLTEN E. Tuning particle properties to control rheological behavior of high internal phase emulsion gels stabilized by zein /tannic acid complex particles [J]. Food Hydrocolloid, 2019, 89: 163 − 170. doi:  10.1016/j.foodhyd.2018.10.037
[31] 曹振宇, 刘泽龙, 张慧娟, 等. 食用植物油脂凝胶化技术研究进展[J]. 中国油脂, 2019, 44(8): 57 − 63.
[32] TALITA A C, RAHELEH R, ALVES D C, et al. Improving oxidative stability of echium oil emulsions fabricated by microfluidics: Effect of ionic gelation and phenolic compounds [J]. Food Chemistry, 2017, 233: 125 − 134. doi:  10.1016/j.foodchem.2017.04.085
[33] KAMALAKANNAN S, MANI R, THANGAMUTHU M D. Self-assembly of sugar based glyco-lipids: Gelation studies of partially protected d-glucose derivatives [J]. Materials Science and Engineering: C, 2018, 93: 776 − 781. doi:  10.1016/j.msec.2018.08.038
[34] GUMUS C E, DECKER C E, MCCLEMENTS D J. Impact of legume protein type and location on lipid oxidation in fish oil-in-water emulsions: Lentil, pea, and faba bean proteins [J]. Food Research International, 2017, 100: 175 − 185. doi:  10.1016/j.foodres.2017.08.029
[35] QIU C Y, WANG B, WANG Y, et al. Effects of colloidal complexes formation between resveratrol and deamidated gliadin on the bioaccessibility and lipid oxidative stability [J]. Food Hydrocolloids, 2017, 69: 466 − 472. doi:  10.1016/j.foodhyd.2017.02.020
[36] BARBARA N E, ENCARNACION G, MARIA D G. Polyunsaturated lipids and vitamin A oxidation during cod liver oil in vitro gastrointestinal digestion. Antioxidant effect of added BHT [J]. Food Chemistry, 2017, 232: 733 − 743. doi:  10.1016/j.foodchem.2017.04.057
[37] YASUKI M, SIRISON J, ISHI J, et al. Soybean lipophilic proteins - Origin and functional properties as affected by interaction with storage proteins [J]. Current Opinion in Colloid & Interface Science, 2017, 28: 120 − 128.