[1] BRUNZELL D H, BOSCHEN K E, HENDRICK E S, et al. Alpha-conotoxin MII-sensitive nicotinic acetylcholine receptors in the nucleus accumbens shell regulate progressive ratio responding maintained by nicotine [J]. Neuropsychopharmacology, 2010, 35(3): 665 − 673. doi:  10.1038/npp.2009.171
[2] PRASHANTH J R. , HASABALLAH N, VETTER I. Pharmacological screening technologies for venom peptide discovery [J]. Neuropharmacology, 2017, 127: 4 − 19. doi:  10.1016/j.neuropharm.2017.03.038
[3] ALBUQUERQUE E X, PEREIRA E, ALKONDON M, et al. Mammalian nicotinic acetylcholine receptors: from structure to function [J]. Physiological Reviews, 2009, 89(1): 73 − 120. doi:  10.1152/physrev.00015.2008
[4] SALMINEN O, DRAPEAU J A, MCINTOSH J M, et al. Pharmacology of α-conotoxin MII-sensitive subtypes of nicotinic acetylcholine receptors isolated by breeding of null mutant mice [J]. Molecular Pharmacology, 2007, 71(6): 1563 − 1571. doi:  10.1124/mol.106.031492
[5] LUO S L, ZHU X P, WU Y, et al. Conotoxins and drug discovery with special reference to Hainan species [J]. Toxins and Drug Discovery, 2017(1): 149 − 187.
[6] ZHANGSUN D T, ZHU X, WU Y, et al. Key residues in the nicotinic acetylcholine receptor β2 subunit contribute to α-Conotoxin LvIA binding [J]. Journal of Biological Chemistry, 2015, 290(15): 9855 − 9862. doi:  10.1074/jbc.M114.632646
[7] LUO S L, ZHANGSUN D T, SCHROEDER C I, et al. A novel α4/7‐conotoxin LvIA from Conus lividus that selectively blocks α3β2 vs. α6/α3β2β3 nicotinic acetylcholine receptors [J]. The FASEB Journal, 2014, 28(4): 1842 − 1853. doi:  10.1096/fj.13-244103
[8] LIN B, BING H, ZHANGSUN D T, et al. Efficient expression of acetylcholine-binding protein from Aplysia californica in Bac-to-Bac system [J]. Biotechnology Bulletin, 2014, 19(10): 1183 − 1193(11).
[9] BORDIA T, MCGREGOR M, MCINTOSH J M, et al. Evidence for a role for α6∗ nAChR in l-dopa-induced dyskinesias using parkinsonian α6∗ nAChR gain-of-function mice [J]. Neuroscience, 2015, 295: 187 − 197. doi:  10.1016/j.neuroscience.2015.03.040
[10] AKONDI K B, MUTTENTHALER M, DUTERTRE S, et al. Discovery, synthesis, and structure–activity relationships of conotoxins [J]. Chemical Reviews, 2014, 114(11): 5815 − 5847. doi:  10.1021/cr400401e
[11] CHANGEUX J P. The Nicotinic acetylcholine receptor: The founding father of the pentameric ligand-gated ion channel superfamily [J]. Journal of Biological Chemistry, 2012, 287(48): 40207 − 40215. doi:  10.1074/jbc.R112.407668
[12] JENSEN A A, FROELUND B, LILJEFORS T, et al. Neuronal nicotinic acetylcholine receptors: Structural revelations, target identifications, and therapeutic inspirations [J]. Journal of Medicinal Chemistry, 2005, 48(15): 4705 − 4745. doi:  10.1021/jm040219e
[13] LIU C, WU P X, ZHU H, et al. Rationally designed α-Conotoxin analogues maintained analgesia activity and weakened side effects [J]. Molecules, 2019, 24(2): 337. doi:  10.3390/molecules24020337
[14] MCINTOSH J M. DOWELL C, WATKINS M, et al. Alpha-conotoxin GIC from Conus geographus, a novel peptide antagonist of nicotinic acetylcholine receptors [J]. Journal of Biological Chemistry, 2002, 277(37): 33610 − 33615. doi:  10.1074/jbc.M205102200
[15] CUNY H, YU R, TAE H S, et al. α-Conotoxins active at α3-containing nicotinic acetylcholine receptors and their molecular determinants for selective inhibition [J]. British Journal of Pharmacology, 2018, 175(11): 1855 − 1868. doi:  10.1111/bph.13852
[16] KALAMIDA D, POULAS K, AVRAMOPOULOU V, et al. Muscle and neuronal nicotinic acetylcholine receptors structure, function and pathogenicity [J]. FEBS Journal, 2007, 273: 3799 − 3845.
[17] DONG X, HUANG W, BIAN Y, et al. Remediation and mechanisms of cadmium biosorption by a cadmium-binding protein from Lentinula edodes [J]. Journal of Agricultural and Food Chemistry, 2019, 67(41): 11373 − 11379. doi:  10.1021/acs.jafc.9b04741
[18] DRENAN R M, MACKEY E, GRADY S R, et al. α6* nAChR expression and function in brain areas influencing DA transmission probed with α6-GFP transgenic mice [J]. Biochemical Pharmacology, 2011, 82(8): 1035 − 1036.
[19] DUTERTRE S, NICKE A, TSETLIN V I. Nicotinic acetylcholine receptor inhibitors derived from snake and snail venoms [J]. Neuropharmacology, 2017, 127: 196 − 223. doi:  10.1016/j.neuropharm.2017.06.011
[20] DUTTON J L, BANSAL P S, HOGG R C, et al. A new level of conotoxin diversity, a non-native disulfide bond connectivity in alpha-conotoxin AuIB reduces structural definition but increases biological activity [J]. Journal of Biological Chemistry, 2002, 277(50): 48849 − 48857. doi:  10.1074/jbc.M208842200
[21] LEBBE E K M, STEVE P, WIJESEKARA I, et al. Conotoxins targeting nicotinic acetylcholine receptors: An overview [J]. Marine Drugs, 2014(12): 2970 − 3004.
[22] ELLISON M, FENG Z P, PARK A J, et al. α-RgIA, a novel conotoxin that blocks the α9α10 nAChR: Structure and identification of key receptor-binding residues [J]. Journal of Molecular Biology, 2008, 377(4): 1216 − 1227. doi:  10.1016/j.jmb.2008.01.082
[23] ZHU X, PAN S, XU M, et al. High selectivity of an α-conotoxin LvIA analogue for α3β2 nicotinic acetylcholine receptors is mediated by β2 functionally important residues [J]. Journal of Medicinal Chemistry, 2020, 63(22): 13656 − 13668. doi:  10.1021/acs.jmedchem.0c00975
[24] LÓPEZ-VERA E, JACOBSEN R B, ELLISON M, et al. A novel alpha conotoxin (α-PIB) isolated from C. purpurascens is selective for skeletal muscle nicotinic acetylcholine receptors [J]. Toxicon, 2007, 49(8): 1193 − 1199. doi:  10.1016/j.toxicon.2007.02.007
[25] FANG G M, CHEN X X, YANG Q Q, et al. Discovery, structure, and chemical synthesis of disulfide-rich peptide toxins and their analogs [J]. Chinese Chemical Letters, 2018, 29(7): 1033 − 1042. doi:  10.1016/j.cclet.2018.02.002
[26] GAO F, CHEN D, MA X, et al. Alpha6-containing nicotinic acetylcholine receptor is a highly sensitive target of alcohol [J]. Neuropharmacology, 2019, 149: 45 − 54. doi:  10.1016/j.neuropharm.2019.01.021
[27] JULIEN G, SEBASTIEN D. alpha-conotoxins to explore the molecular, physiological and pathophysiological functions of neuronal nicotinic acetylcholine receptors [J]. Neuroscience Letters, 2018, 679: 24 − 34. doi:  10.1016/j.neulet.2017.11.063