[1] SUBRAMANI R, AALBERSBERG W. Marine actinomycetes: an ongoing source of novel bioactive metabolites [J]. Microbiological Research, 2012, 167(10): 571 − 580. doi:  10.1016/j.micres.2012.06.005
[2] KAMJAM M, SIVALINGAM P, DENG Z, et al. Deep Sea actinomycetes and their secondary metabolites [J]. Frontiers in Microbiology, 2017, 8: 760. doi:  10.3389/fmicb.2017.00760
[3] SKROPETA D, WEI L. Recent advances in deep-sea natural products [J]. Natural Product Reports, 2014, 31(8): 999 − 1025. doi:  10.1039/C3NP70118B
[4] WRIGHT P C, WESTACOTT R E, BURJA A M. Piezotolerance as a metabolic engineering tool for the biosynthesis of natural products [J]. Biomolecular Engineering, 2003, 20(4/5/6): 325 − 331. doi:  10.1016/s1389-0344(03)00042-x
[5] MA L, BARTHOLOME A, TONG M H, et al. Identification of a fluorometabolite from Streptomyces sp. MA37: (2R3S4S)-5-fluoro-2, 3, 4-trihydroxypentanoic acid [J]. Chemical Science, 2015, 6(2): 1414 − 1419. doi:  10.1039/c4sc03540b
[6] RAMALINGAM V, RAJARAM R. Antioxidant activity of 1-hydroxy-1-norresistomycin derived from Streptomyces variabilis KP149559 and evaluation of its toxicity against zebra fish Danio rerio [J]. RSC Advances, 2016, 6(20): 16615 − 16623. doi:  10.1039/C5RA22558B
[7] SU J. Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary [J]. Continental Shelf Research, 2004, 24(16): 1745 − 1760. doi:  10.1016/j.csr.2004.06.005
[8] 蔡观强, 彭学超, 张玉兰. 南海沉积物物质来源研究的意义及其进展[J]. 海洋科学进展, 2011, 29(1): 113 − 121. doi:  10.3969/j.issn.1671-6647.2011.01.014
[9] BOETIUS A, WENZHöFER F. Seafloor oxygen consumption fuelled by methane from cold seeps [J]. Nature Geoscience, 2013, 6(9): 725 − 734. doi:  10.1038/ngeo1926
[10] FENG D, QIU J W, HU Y, et al. Cold seep systems in the South China Sea: an overview [J]. Journal of Asian Earth Sciences, 2018, 168: 3 − 16. doi:  10.1016/j.jseaes.2018.09.021
[11] KNITTEL K, BOETIUS A. Anaerobic oxidation of methane: progress with an unknown process [J]. Annual Review of Microbiology, 2009, 63: 311 − 334. doi:  10.1146/annurev.micro.61.080706.093130
[12] VIGNERON A, CRUAUD P, PIGNET P, et al. Archaeal and anaerobic methane oxidizer communities in the Sonora Margin cold seeps, Guaymas Basin (Gulf of California) [J]. The ISME Journal, 2013, 7(8): 1595 − 1608. doi:  10.1038/ismej.2013.18
[13] 孙瑜, 牛明杨, 刘俏, 等. 南海Formosa冷泉区沉积物微生物多样性与分布规律研究[J]. 微生物学报, 2022, 62(6): 2001 − 2020.
[14] HU X Y, LI X M, YANG S Q, et al. New cytochalasin derivatives from deep-sea cold seep-derived endozoic fungus Curvularia verruculosa CS-129 [J]. Chemistry & Biodiversity, 2022, 19(8): e202200550. doi:  10.1002/cbdv.202200550
[15] HU X Y, WANG C Y, LI X M, et al. Cytochalasin derivatives from the endozoic Curvularia verruculosa CS-129, a fungus isolated from the deep-sea squat lobster Shinkaia crosnieri living in the cold seep environment [J]. Journal of Natural Products, 2021, 84(12): 3122 − 3130. doi:  10.1021/acs.jnatprod.1c00907
[16] SONG Q, YANG S Q, LI X M, et al. Aromatic polyketides from the deep-sea cold-seep mussel associated endozoic fungus Talaromyces minioluteus CS-138 [J]. Marine Drugs, 2022, 20(8): 529. doi:  10.3390/md20080529
[17] HU X, LI X, YANG S, et al. Vercytochalasins A and B: Two unprecedented biosynthetically related cytochalasins from the deep-sea-sourced endozoic fungus Curvularia verruculosa [J]. Chinese Chemical Letters, 2023, 34(2): 107516. doi:  10.1016/j.cclet.2022.05.030
[18] YAN L H, LI P H, LI X M, et al. Chevalinulins A and B, proangiogenic alkaloids with a spiro[bicyclo[2.2. 2]octane-diketopiperazine]skeleton from deep-sea cold-seep-derived fungus Aspergillus chevalieri CS-122 [J]. Organic Letters, 2022, 24(14): 2684 − 2688. doi:  10.1021/acs.orglett.2c00781
[19] JIN E, LI H, LIU Z, et al. Antibiotic dixiamycins from a cold-seep-derived Streptomyces olivaceus [J]. Journal of Natural Products, 2021, 84(9): 2606 − 2611. doi:  10.1021/acs.jnatprod.1c00411
[20] NIU M, FAN X, ZHUANG G, et al. Methane-metabolizing microbial communities in sediments of the Haima cold seep area, northwest slope of the South China Sea [J]. FEMS Microbiology Ecology, 2017, 93(9): fix101. doi:  10.1093/femsec/fix101
[21] ZHUANG G C, XU L, LIANG Q, et al. Biogeochemistry, microbial activity, and diversity in surface and subsurface deep-sea sediments of South China Sea [J]. Limnology and Oceanography, 2019, 64(5): 2252 − 2270. doi:  10.1002/lno.11182
[22] JING H, WANG R, JIANG Q, et al. Anaerobic methane oxidation coupled to denitrification is an important potential methane sink in deep-sea cold seeps [J]. Science of the Total Environment, 2020, 748: 142459. doi:  10.1016/j.scitotenv.2020.142459
[23] LING J, GUAN H, LIU L, et al. The diversity, composition, and putative functions of gill-associated bacteria of bathymodiolin mussel and vesicomyid clam from Haima cold seep, South China Sea [J]. Microorganisms, 2020, 8(11): 1699. doi:  10.3390/microorganisms8111699
[24] WEISBURG W G, BARNS S M, PELLETIER D A, et al. 16S ribosomal DNA amplification for phylogenetic study [J]. Journal of Bacteriology, 1991, 173(2): 697 − 703. doi:  10.1128/jb.173.2.697-703.1991
[25] FOR THE BSAC WORKING PARTY ON SUSCEPTIBILITY TESTING, ANDREWS J M. BSAC standardized disc susceptibility testing method [J]. Journal of Antimicrobial Chemotherapy, 2001, 48(suppl_1): 43 − 57. doi:  10.1093/jac/48.suppl_1.43
[26] 肖珂, 周双清, 许云, 等. 海绵共附生放线菌的分离鉴定与抑菌活性分析[J]. 热带生物学报, 2020, 11(2): 156 − 162.
[27] CHENG C, OTHMAN E M, REIMER A, et al. Ageloline A, new antioxidant and antichlamydial quinolone from the marine sponge-derived bacterium Streptomyces sp. SBT345 [J]. Tetrahedron Letters, 2016, 57(25): 2786 − 2789. doi:  10.1016/j.tetlet.2016.05.042
[28] KIM M, OH H S, PARK S C, et al. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes [J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt 2): 346−351. doi:  10.1099/ijs.0.059774-0
[29] 贾文文. 南大西洋深海放线菌的分离与多样性分析 [D]. 哈尔滨: 哈尔滨工业大学, 2013.
[30] 张玉便, 张改云. 南大西洋深海沉积物中可培养放线菌的多样性[J]. 应用海洋学学报, 2014, 33(4): 508 − 515. doi:  10.3969/J.ISSN.2095-4972.2014.04.008
[31] SAYAVEDRA-SOTO L A, HAMAMURA N, LIU C W, et al. The membrane-associated monooxygenase in the butane-oxidizing Gram-positive bacterium Nocardioides sp. strain CF8 is a novel member of the AMO/PMO family [J]. Environmental Microbiology Reports, 2011, 3(3): 390 − 396. doi:  10.1111/j.1758-2229.2010.00239.x
[32] ZHANG W, LIU Z, LI S, et al. Fluostatins i–k from the South China Sea-derived Micromonospora rosaria scsio N160 [J]. Journal of Natural Products, 2012, 75(11): 1937 − 1943. doi:  10.1021/np300505y
[33] RUFF S E, BIDDLE J F, TESKE A P, et al. Global dispersion and local diversification of the methane seep microbiome [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(13): 4015 − 4020. doi:  10.1073/pnas.1421865112