[1] APSE M P, AHARON G S, SNEDDEN W A, et al. Salt tolerance conferred by over expression of a vacuolar Na +/H +antiport in Arabidopsis[J]. Science,1999,285(5431): 1256-1258.
[2] ZHU J K. Plant salt tolerance[J]. Trends Plant Sci, 2001,6(12): 66-71.
[3] TESTER M, DAVENPORT R. Na+ tolerance and Na+ transport in higher plants[J]. Ann Botany, 2003,91(5): 503-527.
[4] SAHI C, SINGH A, KUMAR K, et al. Salt stress response in rice: genetics, molecular biology, and comparative genomics [J]. Funct Integr Genomics, 2006, 6(4): 263-284.
[5] ASKARI H, EDQVIST J, HAJHEIDARI M, et al. Effects of salinity levels on proteome of Suaeda aegyptiaca leaves[J]. Proteomics, 2006, 6(8): 2542-2554.
[6] WANG X C, FAN P X, SONG H M, et al. Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity[J]. J Proteome Res. , 2009, 8(7): 3331-3345.
[7] GREENWAY H, MUNNS R. Mechanisms of salt tolerance in nonhalophytes[J]. Annu Rev Plant Physiol, 1980, 31: 149-190.
[8] BLUMWALD E. Sodium transport and salt tolerance in plants[J]. Curr Opin Cell Biol, 2000, 12(4): 431-434.
[9] LOKHANDE V H, NIKAM T D, PATADE V Y, et al. Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in Sesuvium portulacastrum L[J]. Plant Cell Tiss Organ Cult, 2011, 104(1): 41-49.
[10] RIEHL T E, UNGAR I A. Growth and ion accumulation in Salicornia europaea under saline field conditions[J]. Oecologia, 1982, 54(2): 193-199.
[11] USHAKOVA S A, KOVALEVA N P, TIKHOMIROVA N A, et al. Effect of photosynthetically active radiation, salinization, and type of nitrogen nutrition on growth of Salicornia europaea[J]. Russ J Plant Physl, 2006, 53(6): 785-793.
[12] VÉRY A A, SENTENAC H. Molecular mechanisms and regulation of K+ transport in higher plants[J]. Annu Rev Plant Biol, 2003, 54: 575-603.
[13] WANG J Y, ZHANG G H , SU Q, et al. Research advances about the relation between membrane spanned ion transporter and salt tolerance in plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(3): 635-640.
[14] BHANDAL T J , MALIK C P. Potassium estimation, uptake and its role in the physiology and mechanism of flowering plants [J]. International Review of Cytology, 1988, 110: 205-254.
[15] 唐昌林. 中国植物志: 第26卷, 第1 分册[M]. 北京: 北京科学出版社, 1996.
[16] RAMANI B, REECK T, DEBEZ A, et al. Aster tripolium L. and Sesuvium portulacastrum L.: two halophytes, two strategies to survive in saline habitats[J]. Plant Physiol Biochem, 2006, 44(5): 395-408.
[17] LOKHANDE V H, NIKAM T D, SUPRASANNA P. Sesuvium portulacastrum L. a promising halophyte: cultivation, utilization and distribution in India[J]. Genet Resour Crop Evol, 2009, 56(5): 741-747.
[18] LOKHANDE V H, Nikam T D, Suprasanna P. Biochemical, physiological and growth changes in response to salinity in callus cultures of Sesuvium portulacastrum L.[J]. Plant Cell Tiss Organ Cult, 2010, 102(1): 17-25.
[19] ROJAS A, HERNANDEZ L, ROGEHO P M, et al. Screening for antimicrobial activity of crude drug extracts and pure natural products from Mexican medicinal plants[J]. J Ethnopharmacol, 1992, 35: 275-283.
[20] KATHIRESAN K, RAVISHANKAR G A, VENKATARAMAN L V. In vitro multiplication of acoastal plant Sesuvium portulacastrum L. by axillary buds cultures[J]. Genet Resour Crop EV, 1997, 56(5): 185-189.
[21] HAMMER K. Mansfelds Encyclopedia on Agricultural and Horticultural Crops[M]. Berlin: Springer Verlag, 2001.
[22] SLAMA I, GHNAYA T, SAVOURE A, et al. Combined effects of long-term salinity and soil drying on growth, water relations, nutrient status and proline accumulation of Sesuvium portulacastrum[J]. C R Biol, 2008, 331(6): 442-451.
[23] RABHI M, FERCHICHI S, JOUINI J, et al. Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop[J]. Bioresource Technol, 2010, 101(17): 6822-6828.
[24] SLAMA I, GHNAYA T, SAVOURÉ A, et al. Combined effects of long-term salinity and soil drying on growth, water relations, nutrient status and proline accumulation of Sesuvium portulacastrum[J]. Comptes Rendus Biologies, 2008, 331(6): 442-451.
[25] MESSEDDI D, SLEIMI N, ABDELLY C. Salt tolerance in Sesuvium portulacastrum[J]. Plant Nutrition, 2001, 92(6): 406-406.
[26] MESSEDDI D, LABIDI N, GRIGNON C, et al. Limits imposed by salt to the growth of the halophyte Sesuvium portulacastrum[J]. Plant Nutrition Soil Science, 2004, 167(6): 720-725.
[27] GHNAYA T, NOUAIRI I, SLARMA I, et al. Cadmium effects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum[J]. J Plant Physiol, 2005, 162(10): 1133-1140.
[28] HOAGLAND D R, ARNON D I. The water culture method for growing plants without soil[J]. Calif Exp Stn Circ, 1938, 347(2): 23-32.
[29] CHUANG F S, SARBECK J R, JOHN P S, et al. Flame spectrometric determination of sodium, potassium and calcium in blood serum by measurement of microsamples[J]. Mikrochim Acta, 1973, 61(4): 523-531.
[30] PENG Y H, ZHU Y F, MAO Y Q, et al. Alkali grass resists salt stress through high K+ and an endodermis barrier to Na+[J]. J Exp Bot, 2004, 55(398): 939-949.
[31]
[32] JENNINGS D H. Halophytes, succulence and sodium in plants-a unified theory[J]. New Phytol. , 1968, 67(4): 899-911.
[33] SHORT D C, COLMER T D. Salt tolerance in the halophyte Halosarcia pergranulata subsp. pergranulata[J]. Ann Botany, 1999, 83(3): 207-213.
[34] PARKS G E, DIETRICH M A, SCHUMAKER K S. Increased vacuolar Na+/H + exchange activity in Salicornia bigelovii Torr in response to NaCl[J]. J Exp Bot, 2002, 53(371): 1055-1065.
[35] USHAKOVA S A, KOVALEVA N P, GRIBOVSKAYA I V, et al. Influence of high concentrations of mineral salts on production process and NaCl accumulation by Salicornia europaea plants as a constituent of the LSS phototroph link[J]. Advances in Space Research, 2005, 35(9): 1589-1593.
[36] AGARIE S, SHIMODA T, SHIMIZU Y, et al. Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum[J]. J Exp Bot, 2007, 58(8): 1957-1967.
[37]
[38] NIU X M, BRESSAN R A, HASEGAWA P M, et al. Ion homeostasis in NaCl stress environments[J]. Plant Physiol, 1995, 109(3): 735-742.
[39] OTTOW E A, BRINKER M, TEICHMANN T, et al. Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress[J]. Plant Physiology, 2005, 139(4): 1762-1772.
[40] ASLAM M, TRAVIS R L, RAINS D W. Differential effect of amino acids on nitrate uptake and reduction systems in barley roots[J]. Plant science, 2001, 160(2): 219-228.
[41] PAKNIYAT H, HANDLEY L L, THOMAS W B, et al. Comparison of shoot dry weight, Na+ content and 13 C values of arie and other semi-dwarf barley mutants under salt-stress[J]. Euphytica, 1997, 94(1): 7-14.
[42] SERRANO R, NAVARRO A R. Ion homeostasis during salt stress in plants[J]. Curr Opin Cell Biol, 2001, 13(4): 399-404.
[43] MOGHAIEB R A, SANEOKA H, FUJITA K. Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritime[J]. Plant Sci, 2004, 166(5): 1345-1349.
[44] BALNOKIN Y V, MYASOEDOV N A, SHAMSUTDINOV Z S, et al. Significance of Na+ and K+ for sustained hydration of organ tissues in ecologically distinct halophytes of the family Chenopodiaceae[J]. Russ J Plant Physl, 2005, 52(6): 882-890.
[45] MAATHUIS F M, AMTMANN A. K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ Ratios[J]. Ann Botany, 1999, 84(2): 123-133.
[46] VOLKOV V, AMTMANN A. Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, has specific root ionchannel features supporting K+/Na+ homeostasis under salinity stress[J]. Plant J, 2006, 48(3): 342-353.
[47] ZHANG H X, BLUMWALD E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit[J]. Nature Biotechnol, 2001, 19(8): 765-768.
[48] APSE M P, BLUMWALD E. Engineering salt tolerance in plants[J]. Curr Opin Biotechnol, 2002, 13(2): 146-150.
[49] GREENWAY H, MUNNS R. Mechanisms of salt tolerance in nonhalophytes[J]. Annu Rev Plant Physiol, 1980, 31: 149-190.
[50] KRONZUCKER H J, SZCZERBA M W, GOUDARZI M M, et al. The cytosolic Na+: K+ ratio does not explain salinity-induced growth impairment in barley: adual-tracer study using 42 K and 24 Na. [J] Plant Cell Environ, 2006, 29(12): 2228-2237.
[51] ZHAO K F, FAN H, ZHOU S, et al. Study on the salt and drought tolerance of Suaeda salsa and Kalanchoe claigremontiana under iso-osmotic salt and water stress[J]. Plant Sci, 2003, 165(4): 837-844.
[52]