[1] 杨宗岱. 中国海草植物地理学的研究[J]. 海洋湖沼通报, 1979(2): 41 − 46.
[2] 王锁民, 崔彦农, 刘金祥, 等. 海草及海草场生态系统研究进展[J]. 草业学报, 2016, 25(11): 149 − 159. doi:  10.11686/cyxb2016025
[3] DUARTE C M. Seagrass depth limits [J]. Aquatic Botany, 1991, 40(4): 363 − 377. doi:  10.1016/0304-3770(91)90081-F
[4] DENNISON W C, ORTH R J, MOORE K A, et al. Assessing water quality with submersed aquatic vegetation [J]. BioScience, 1993, 43(2): 86 − 94. doi:  10.2307/1311969
[5] DUARTE C M, CHISCANO C L. Seagrass biomass and production: a reassessment [J]. Aquatic Botany, 1999, 65(1): 159 − 174.
[6] 邱广龙, 林幸助, 李宗善, 等. 海草生态系统的固碳机理及贡献[J]. 应用生态学报, 2014, 25(6): 1825 − 1832.
[7] 韩秋影, 施平. 海草生态学研究进展[J]. 生态学报, 2008(11): 5561 − 5570. doi:  10.3321/j.issn:1000-0933.2008.11.040
[8] 李文涛, 张秀梅. 海草场的生态功能[J]. 中国海洋大学学报(自然科学版), 2009, 39(5): 933 − 939.
[9] WAYCOTT M, DUARTE C M, CARRUTHERS T J B, et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(30): 12377 − 12381. doi:  10.1073/pnas.0905620106
[10] ORTH R J, CARRUTHERS T J B, DENNISON W C, et al. A global crisis for seagrass ecosystems [J]. BioScience, 2006, 56(12): 987 − 996. doi:  10.1641/0006-3568(2006)56[987:AGCFSE]2.0.CO;2
[11] PERALTA G, PEREZ-LLORENS J L, HERNANDEZ I, et al. Effects of light availability on growth, architecture and nutrient content of the seagrass Zostera noltii Hornem [J]. Journal of Experimental Marine Biology and Ecology, 2002, 269(1): 9 − 26. doi:  10.1016/S0022-0981(01)00393-8
[12] RUIZ J M, ROMERO J. Effects of disturbances caused by coastal constructions on spatial structure, growth dynamics and photosynthesis of the seagrass Posidonia oceanica [J]. Marine Pollution Bulletin, 2003, 46(12): 1523 − 1533. doi:  10.1016/j.marpolbul.2003.08.021
[13] SILVA J, BARROTE I, COSTA M M, et al. Physiological responses of Zostera marina and Cymodocea nodosa to light-limitation stress [J]. PLOS ONE, 2013, 8(11): e81058. doi:  10.1371/journal.pone.0081058
[14] LONGSTAFF B J, DENNISON W C. Seagrass survival during pulsed turbidity events: the effects of light deprivation on the seagrasses Halodule pinifolia and Halophila ovalis [J]. Aquatic Botany, 1999, 65(1): 105 − 121.
[15] LONGSTAFF B J, LONERAGAN N R, O'DONOHUE M J, et al. Effects of light deprivation on the survival and recovery of the seagrass Halophila ovalis (R. Br. ) Hook [J]. Journal of Experimental Marine Biology and Ecology, 1999, 234(1): 1 − 27. doi:  10.1016/S0022-0981(98)00137-3
[16] RALPH P J, DURAKO M J, ENRIQUEZ S, et al. Impact of light limitation on seagrasses [J]. Journal of Experimental Marine Biology and Ecology, 2007, 350(1): 176 − 193.
[17] GORDON D M, GREY K A, CHASE S C, et al. Changes to the structure and productivity of a Posidonia sinuosa meadow during and after imposed shading [J]. Aquatic Botany, 1994, 47(3/4): 265 − 275.
[18] CAMPBELL S J, MILLER C J. Shoot and abundance characteristics of the seagrass Heterozostera tasmanica in Westernport estuary (south-eastern Australia) [J]. Aquatic Botany, 2002, 73(1): 33 − 46. doi:  10.1016/S0304-3770(02)00002-5
[19] VIA J D, STURMBAUER C, SCHNWEGER G, et al. Light gradients and meadow structure in Posidonia oceanica: ecomorphological and functional correlates [J]. Marine Ecology Progress Series, 1998, 163: 267 − 278. doi:  10.3354/meps163267
[20] MEDIAVILLA S, ESCUDERO A. Differences in biomass allocation patterns between saplings of two co-occurring Mediterranean oaks as reflecting different strategies in the use of light and water [J]. European Journal of Forest Research, 2010, 129(4): 697 − 706. doi:  10.1007/s10342-010-0375-2
[21] LEE K-S, DUNTON K H. Effect of in situ light reduction on the maintenance, growth and partitioning of carbon resources in Thalassia testudinum banks ex König [J]. Journal of Experimental Marine Biology and Ecology, 1997, 210(1): 53 − 73. doi:  10.1016/S0022-0981(96)02720-7
[22] PACIULLO D S C, GOMIDE C A M, CASTRO C R T, et al. Morphogenesis, biomass and nutritive value of Panicum maximum under different shade levels and fertilizer nitrogen rates [J]. Grass and Forage Science, 2017, 72(3): 590 − 600. doi:  10.1111/gfs.12264
[23] 王振南, 杨惠敏. 植物碳氮磷生态化学计量对非生物因子的响应[J]. 草业科学, 2013, 30(6): 927 − 934.
[24] RUIZ J M, ROMERO J. Effects of in situ experimental shading on the Mediterranean seagrass Posidonia oceanica [J]. Marine Ecology Progress, 2001, 215: 107 − 120. doi:  10.3354/meps215107
[25] DAHL M, DEYANOVA D, LYIMO L D, et al. Effects of shading and simulated grazing on carbon sequestration in a tropical seagrass meadow [J]. Journal of Ecology, 2016, 104(3): 654 − 664. doi:  10.1111/1365-2745.12564
[26] PREMARATHNE C, JIANG Z J, HE J L, et al. Low light availability reduces the subsurface sediment carbon content in Halophila beccarii from the South China Sea [J]. Frontiers in Plant Science, 2021, 12: 664060. doi:  10.3389/fpls.2021.664060
[27] 郑凤英, 邱广龙, 范航清, 等. 中国海草的多样性、分布及保护[J]. 生物多样性, 2013, 21(5): 517 − 526.
[28] 于硕, 张景平, 崔黎军, 等. 基于种子法的海菖蒲海草床恢复[J]. 热带海洋学报, 2019, 38(1): 49 − 54.
[29] 陈石泉, 王道儒, 吴钟解, 等. 海南岛东海岸海草床近10 a变化趋势探讨[J]. 海洋环境科学, 2015, 34(1): 48 − 53.
[30] 王道儒, 吴钟解, 陈春华, 等. 海南岛海草资源分布现状及存在威胁[J]. 海洋环境科学, 2012, 31(1): 34 − 38. doi:  10.3969/j.issn.1007-6336.2012.01.008
[31] 蒋凯, 高辉, 陈小勇. 海南岛海菖蒲种群克隆多样性和遗传结构[J]. 应用生态学报, 2018, 29(2): 397 − 402.
[32] 陈石泉, 庞巧珠, 蔡泽富, 等. 海南黎安港海草床分布特征、健康状况及影响因素分析[J]. 海洋科学, 2020, 44(11): 57 − 64.
[33] 蔡泽富, 陈石泉, 吴钟解, 等. 海南岛海湾与潟湖中海草的分布差异及影响分析[J]. 海洋湖沼通报, 2017(3): 74 − 84.
[34] 鲍士旦. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社, 2000: 285-292.
[35] ABAL E G, LONERAGAN N, BOWEN P, et al. Physiological and morphological responses of the seagrass Zostera capricorni Aschers, to light intensity [J]. Journal of Experimental Marine Biology and Ecology, 1994, 178(1): 113 − 129. doi:  10.1016/0022-0981(94)90228-3
[36] WAYCOTT M, LONGSTAFF B J, MELLORS J. Seagrass population dynamics and water quality in the Great Barrier Reef region: A review and future research directions [J]. Marine Pollution Bulletin, 2005, 51(1): 343 − 350.
[37] 郭美玉, 李文涛, 杨晓龙, 等. 鳗草在荣成天鹅湖不同生境中生长的适应性[J]. 应用生态学报, 2017, 28(5): 1498 − 1506.
[38] LEONI V, VELA A, PASQUALINI V, et al. Effects of experimental reduction of light and nutrient enrichments (N and P) on seagrasses: A review [J]. Aquatic Conservation:Marine and Freshwater Ecosystems, 2008, 18(2): 202 − 220. doi:  10.1002/aqc.842
[39] BERTELLI C M, UNSWORTH R K F. Light stress responses by the eelgrass, Zostera marina(L) [J]. Frontiers in Environmental Science, 2018, 6(39): 1 − 13.
[40] YAAKUB S M, CHEN E, BOUMA T J, et al. Chronic light reduction reduces overall resilience to additional shading stress in the seagrass Halophila ovalis [J]. Marine Pollution Bulletin, 2014, 83(2): 467 − 474. doi:  10.1016/j.marpolbul.2013.11.030
[41] OLSEN B, ENRIQUEZ S, DUARTE C M. Depth-acclimation of photosynthesis, morphology and demography of Posidonia oceanica and Cymodocea nodosa in the Spanish Mediterranean Sea [J]. Marine Ecology Progress, 2002, 236: 89 − 97. doi:  10.3354/meps236089
[42] ENRIQUEZ S, PANTOJA-REYES N I. Form-function analysis of the effect of canopy morphology on leaf self-shading in the seagrass Thalassia testudinum [J]. Oecologia, 2005, 145(2): 235 − 243.
[43] WEINER J. Allocation, plasticity and allometry in plants [J]. Perspectives in Plant Ecology Evolution and Systematics, 2004, 6(4): 207 − 215. doi:  10.1078/1433-8319-00083
[44] COLLIER C J, LAVERYavery P S, MASINI R J, et al. Morphological, growth and meadow characteristics of the seagrass Posidonia sinuosa along a depth-related gradient of light availability [J]. Marine Ecology Progress Series, 2007, 337: 103 − 115. doi:  10.3354/meps337103
[45] GROOT D C D, BOOGAARD R V D, MARCELIS L F M, et al. Contrasting effects of N and P deprivation on the regulation of photosynthesis in tomato plants in relation to feedback limitation [J]. Journal of Experimental Botany, 2003, 54(389): 1957 − 1967. doi:  10.1093/jxb/erg193