[1] |
ALI J, MUKARRAM M, OJO J, et al. Harnessing phytohormones: advancing plant growth and defence strategies for sustainable agriculture[J]. Physiologia Plantarum, 2024, 176(3): e14307. doi: 10.1111/ppl.14307 |
[2] |
WANG Z, LI X F, WANG X T, et al. Arabidopsis endoplasmic reticulum-localized UBAC2 proteins interact with PAMP-INDUCED COILED-COIL to regulate pathogen-induced callose deposition and plant immunity[J]. The Plant Cell, 2019, 31(1): 153 − 171. doi: 10.1105/tpc.18.00334 |
[3] |
KAZAN K, MANNERS J M. Linking development to defense: auxin in plant-pathogen interactions[J]. Trends in Plant Science, 2009, 14(7): 373 − 382. doi: 10.1016/j.tplants.2009.04.005 |
[4] |
RAMOS J A, ZENSER N, LEYSER O, et al. Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent[J]. The Plant Cell, 2001, 13(10): 2349 − 2360. doi: 10.1105/tpc.010244 |
[5] |
冯寒骞, 李超. 生长素信号转导研究进展[J]. 生物技术通报, 2018, 34(7): 24 − 30. doi: 10.13560/j.cnki.biotech.bull.1985.2018-0488 |
[6] |
NEBENFÜHR A, WHITE T, LOMAX T L. The diageotropica mutation alters auxin induction of a subset of the Aux/IAA gene family in tomato[J]. Plant Molecular Biology, 2000, 44(1): 73 − 84. doi: 10.1023/A:1006437205596 |
[7] |
LISCUM E, REED J W. Genetics of Aux/IAA and ARF action in plant growth and development[J]. Plant Molecular Biology, 2002, 49(3/4): 387 − 400. doi: 10.1023/A:1015255030047 |
[8] |
JAIN M, KAUR N, GARG R, et al. Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa)[J]. Functional & Integrative Genomics, 2006, 6(1): 47 − 59. doi: 10.1007/s10142-005-0005-0 |
[9] |
WANG Y J, DENG D X, BIAN Y L, et al. Genome-wide analysis of primary auxin-responsive Aux/IAA gene family in maize(Zea mays L.)[J]. Molecular Biology Reports, 2010, 37(8): 3991 − 4001. doi: 10.1007/s11033-010-0058-6 |
[10] |
WANG S K, BAI Y H, SHEN C J, et al. Auxin-related gene families in abiotic stress response in Sorghum bicolor[J]. Functional & Integrative Genomics, 2010, 10(4): 533 − 546. doi: 10.1007/s10142-010-0174-3 |
[11] |
GAO J P, CAO X L, SHI S D, et al. Genome-wide survey of Aux/IAA gene family members in potato (Solanum tuberosum): identification, expression analysis, and evaluation of their roles in tuber development[J]. Biochemical and Biophysical Research Communications, 2016, 471(2): 320 − 327. doi: 10.1016/j.bbrc.2016.02.013 |
[12] |
司马晓娇, 郑炳松. 植物生长素原初响应基因Aux/IAA研究进展[J]. 浙江农林大学学报, 2015, 32(2): 313 − 318. doi: 10.11833/j.issn.2095-0756.2015.02.021 |
[13] |
SINGLA B, CHUGH A, KHURANA J P, et al. An early auxin-responsive Aux/IAA gene from wheat (Triticum aestivum) is induced by epibrassinolide and differentially regulated by light and calcium[J]. Journal of Experimental Botany, 2006, 57(15): 4059 − 4070. doi: 10.1093/jxb/erl182 |
[14] |
BASSA C, MILA I, BOUZAYEN M, et al. Phenotypes associated with down-regulation of Sl-IAA27 support functional diversity among Aux/IAA family members in tomato[J]. Plant and Cell Physiology, 2012, 53(9): 1583 − 1595. doi: 10.1093/pcp/pcs101 |
[15] |
WANG F B, NIU H F, XIN D Q, et al. OsIAA18, an Aux/IAA transcription factor gene, is involved in salt and drought tolerance in rice[J]. Frontiers in Plant Science, 2021, 12: 738660. doi: 10.3389/fpls.2021.738660 |
[16] |
SALEHIN M, LI B H, TANG M, et al. Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels[J]. Nature Communications, 2019, 10(1): 4021. doi: 10.1038/s41467-019-12002-1 |
[17] |
SU Y X, WANG G L, HUANG Z Y, et al. Silencing GhIAA43, a member of cotton AUX/IAA genes, enhances wilt resistance via activation of salicylic acid-mediated defenses[J]. Plant Science, 2022, 314: 111126. doi: 10.1016/j.plantsci.2021.111126 |
[18] |
庞祥宇. 木薯IAA/ARF基因家族预测、表达及功能分析[D]. 南宁: 广西大学, 2019. |
[19] |
李远超, 李可, 王连南, 等. 木薯根组织特异性启动子的克隆及鉴定[J]. 南方农业学报, 2023, 54(7): 1925 − 1932. doi: 10.3969/j.issn.2095-1191.2023.07.004 |
[20] |
关玲, 赵密珍, 王庆莲, 等. 改良CTAB方法提取果树不同组织的RNA[J]. 江苏农业科学, 2018, 46(15): 19 − 22. doi: 10.15889/j.issn.1002-1302.2018.15.005 |
[21] |
董亚彬, 白玉晶. 木薯过氧化氢酶基因的克隆与原核表达[J]. 分子植物育种, 2024, 22(15): 4912 − 4918. doi: 10.13271/j.mpb.022.004912 |
[22] |
白玉晶, 韦运谢. 木薯金属硫蛋白基因的克隆和表达分析[J]. 分子植物育种, 2020, 18(8): 2439 − 2444. doi: 10.13271/j.mpb.018.002439 |
[23] |
MARTÍNEZ-DE LA CRUZ E, GARCÍA-RAMÍREZ E, VÁZQUEZ-RAMOS J M, et al. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings[J]. Journal of Plant Physiology, 2015, 176: 147 − 156. doi: 10.1016/j.jplph.2014.11.012 |
[24] |
ZHANG Z J, RUNIONS A, MENTINK R A, et al. A WOX/auxin biosynthesis module controls growth to shape leaf form[J]. Current Biology, 2020, 30(24): 4857−4868. e6. DOI: 10.1016/j.cub.2020.09.037. |
[25] |
LUO J, ZHOU J J, ZHANG J Z. Aux/IAA gene family in plants: molecular structure, regulation, and function[J]. International Journal of Molecular Sciences, 2018, 19(1): 259. doi: 10.3390/ijms19010259 |
[26] |
樊书宏. 木薯Aux/IAA家族分离鉴定及其在木薯细菌枯萎病抗性反应的功能[D]. 海口: 海南大学, 2019. doi: 10.27073/d.cnki.ghadu.2019.000885. |
[27] |
KIDD B N, KADOO N Y, DOMBRECHT B, et al. Auxin signaling and transport promote susceptibility to the root-infecting fungal pathogen Fusarium oxysporum in Arabidopsis[J]. Molecular Plant-Microbe Interactions, 2011, 24(6): 733 − 748. doi: 10.1094/MPMI-08-10-0194 |
[28] |
WANG D, PAJEROWSKA-MUKHTAR K, CULLER A H, et al. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway[J]. Current Biology, 2007, 17(20): 1784 − 1790. doi: 10.1016/j.cub.2007.09.025 |