[1] Raza A, Charagh S, Zahid Z, et al. Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants [J]. Plant Cell Reports, 2021, 40(8): 1513−1541. https://doi.org/10.1007/s00299-020-02614-z doi:  10.1007/s00299-020-02614-z
[2] Wang Y, Mostafa S, Zeng W, et al. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses [J]. International Journal of Molecular Sciences, 2021, 22(16): 8568. https://doi.org/10.3390/ijms22168568 doi:  10.3390/ijms22168568
[3] Caarls L, Elberse J, Awwanah M, et al. Arabidopsis jasmonate-induced oxygenases down-regulate plant immunity by hydroxylation and inactivation of the hormone jasmonic acid [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(24): 6388−6393.
[4] Yan J, Yao R, Chen L, et al. Dynamic perception of jasmonates by the F-box protein COI1 [J]. Molecular Plant, 2018, 11(10): 1237−1247. https://doi.org/10.1016/j.molp.2018.07.007 doi:  10.1016/j.molp.2018.07.007
[5] Koo A J, Thireault C, Zemelis S, et al. Endoplasmic reticulum-associated inactivation of the hormone jasmonoyl-l-isoleucine by multiple members of the cytochrome P450 94 family in Arabidopsis [J]. The Journal of Biological Chemistry, 2014, 289(43): 29728−29738. https://doi.org/10.1074/jbc.M114.603084 doi:  10.1074/jbc.M114.603084
[6] Koo A J K, Cooke T F, Howe G A. Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-L-isoleucine [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(22): 9298−9303.
[7] Widemann E, Miesch L, Lugan R, et al. The amidohydrolases IAR3 and ILL6 contribute to jasmonoyl-isoleucine hormone turnover and generate 12-hydroxyjasmonic acid upon wounding in Arabidopsis leaves [J]. The Journal of Biological Chemistry, 2013, 288(44): 31701−31714. https://doi.org/10.1074/jbc.M113.499228 doi:  10.1074/jbc.M113.499228
[8] Zhang T, Poudel A N, Jewell J B, et al. Hormone crosstalk in wound stress response: wound-inducible amidohydrolases can simultaneously regulate jasmonate and auxin homeostasis in Arabidopsis thaliana [J]. Journal of Experimental Botany, 2016, 67(7): 2107−2120. https://doi.org/10.1093/jxb/erv521 doi:  10.1093/jxb/erv521
[9] Patkar R N, Benke P I, Qu Z, et al. A fungal monooxygenase-derived jasmonate attenuates host innate immunity [J]. Nature Chemical Biology, 2015, 11(9): 733−740. https://doi.org/10.1038/nchembio.1885 doi:  10.1038/nchembio.1885
[10] Smirnova E, Marquis V, Poirier L, et al. Jasmonic acid oxidase 2 hydroxylates jasmonic acid and represses basal defense and resistance responses against Botrytis cinerea infection [J]. Molecular Plant, 2017, 10(9): 1159−1173. https://doi.org/10.1016/j.molp.2017.07.010 doi:  10.1016/j.molp.2017.07.010
[11] Zhang X, Wang D, Elberse J, et al. Structure-guided analysis of Arabidopsis jasmonate induced oxygenase (JOX) 2 reveals key residues for recognition of jasmonic acid substrate by plant JOXs [J]. Molecular Plant, 2021, 14(5): 820−828. https://doi.org/10.1016/j.molp.2021.01.017 doi:  10.1016/j.molp.2021.01.017
[12] Kawai Y, Ono E, Mizutani M. Evolution and diversity of the 2‐oxoglutarate‐dependent dioxygenase superfamily in plants [J]. The Plant Journal, 2014, 78(2): 328−343. https://doi.org/10.1111/tpj.12479 doi:  10.1111/tpj.12479
[13] Ndecky S, Malherbe L, Villette C, et al. Rice jasmonic acid oxidases (OsJAO) control resting jasmonate metabolism to promote development and repress basal immune responses[EB/OL].America: bioRxiv, (2024-07-24)[2024-12-25]. http://biorxiv.org/lookup/doi/10.1101/2024.07.24.604933.
[14] Tang J, Yang D, Wu J, et al. Silencing JA hydroxylases in Nicotiana attenuate enhances jasmonic acid-isoleucine-mediated defenses against Spodoptera litura [J]. Plant Diversity, 2020, 42(2): 111−119. https://doi.org/10.1016/j.pld.2019.11.005 doi:  10.1016/j.pld.2019.11.005
[15] 刘盟盟, 赵佩, 陈伟, 等. 棉花茉莉酸氧化酶基因GhJOX2参与抗黄萎病的功能分析[J]. 中国科学: 生命科学, 2022, 52(4): 523−533.
[16] Zhu T, Herrfurth C, Xin M, et al. Warm temperature triggers JOX and ST2A-mediated jasmonate catabolism to promote plant growth [J]. Nature Communications, 2021, 12(1): 4804. https://doi.org/10.1038/s41467-021-24883-2 doi:  10.1038/s41467-021-24883-2
[17] Nassar N M A. Cassava, Manihot esculenta Crantz, genetic resources: origin of the crop, its evolution and relationships with wild relatives [J]. Genetics and Molecular Research, 2002, 1(4): 298−305.
[18] Baeyens J, Kang Q, Appels L, et al. Challenges and opportunities in improving the production of bio-ethanol [J]. Progress in Energy and Combustion Science, 2015, 47: 60−88. https://doi.org/10.1016/j.pecs.2014.10.003 doi:  10.1016/j.pecs.2014.10.003
[19] 徐宇佳, 徐锦玲, 李丛希, 等. 世界木薯产业政策新动向及对中国的启示[J]. 中国热带农业, 2023(6): 5−11. https://doi.org/10.3969/j.issn.1673-0658.2023.06.007 doi:  10.3969/j.issn.1673-0658.2023.06.007
[20] Mistry J, Finn R D, Eddy S R, et al. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions [J]. Nucleic Acids Research, 2013, 41(12): e121. https://doi.org/10.1093/nar/gkt263 doi:  10.1093/nar/gkt263
[21] Edgar R C. Muscle5: high-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny [J]. Nature Communications, 2022, 13(1): 6968. https://doi.org/10.1038/s41467-022-34630-w doi:  10.1038/s41467-022-34630-w
[22] Capella-Gutiérrez S, Silla-Martínez J M, Gabaldón T. TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses [J]. Bioinformatics, 2009, 25(15): 1972−1973. https://doi.org/10.1093/bioinformatics/btp348 doi:  10.1093/bioinformatics/btp348
[23] Nguyen L T, Schmidt H A, Von Haeseler A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies [J]. Molecular Biology and Evolution, 2015, 32(1): 268−274. https://doi.org/10.1093/molbev/msu300 doi:  10.1093/molbev/msu300
[24] Chen C, Wu Y, Li J, et al. TBtools-Ⅱ: a “one for all, all for one” bioinformatics platform for biological big-data mining [J]. Molecular Plant, 2023, 16(11): 1733−1742. https://doi.org/10.1016/j.molp.2023.09.010 doi:  10.1016/j.molp.2023.09.010
[25] Lescot M. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences [J]. Nucleic Acids Research, 2002, 30(1): 325−327. https://doi.org/10.1093/nar/30.1.325 doi:  10.1093/nar/30.1.325
[26] Bailey T L, Johnson J, Grant C E, et al. The MEME Suite [J]. Nucleic Acids Research, 2015, 43(W1): W39−W49. https://doi.org/10.1093/nar/gkv416 doi:  10.1093/nar/gkv416
[27] Nye D G, Irigoyen M L, Perez-Fons L, et al. Integrative transcriptomics reveals association of abscisic acid and lignin pathways with cassava whitefly resistance [J]. BMC Plant Biology, 2023, 23(1): 657. https://doi.org/10.1186/s12870-023-04607-y doi:  10.1186/s12870-023-04607-y
[28] Zhang R, Chen X, Wang Y, et al. Genome-wide identification of hormone biosynthetic and metabolism genes in the 2OGD family of tobacco and JOX genes silencing enhances drought tolerance in plants [J]. International Journal of Biological Macromolecules, 2024, 280(P2): 135731.
[29] Jeffares D C, Penkett C J, Bähler J. Rapidly regulated genes are intron poor [J]. Trends in Genetics, 2008, 24(8): 375−378. https://doi.org/10.1016/j.tig.2008.05.006 doi:  10.1016/j.tig.2008.05.006
[30] Li C, Du J, Xu H, et al. UVR8-TCP4-LOX2 module regulates UV-B tolerance in Arabidopsis [J]. Journal of Integrative Plant Biology, 2024, 66(5): 897−908. https://doi.org/10.1111/jipb.13648 doi:  10.1111/jipb.13648