[1] YE W H, FAN B, PURCELL W, et al. Anti-biofilm efficacy of root canal irrigants against in-situ Enterococcus faecalis biofilms in root canals, isthmuses and dentinal tubules [J]. J Dent, 2019, 79: 68 − 76.
[2] LIU B H, YU L C. in-situ, time-lapse study of extracellular polymeric substance discharge in Streptococcus mutans biofilm [J]. Colloids Surf B Biointerfaces, 2017, 150: 98 − 105. doi:  10.1016/j.colsurfb.2016.11.031
[3] MARTINS M L, LEITE K L F, PACHECO-FILHO E F, et al. Efficacy of red propolis hydro-alcoholic extract in controlling Streptococcus mutans biofilm build-up and dental enamel demineralization [J]. Arch Oral Biol, 2018, 93: 56 − 65. doi:  10.1016/j.archoralbio.2018.05.017
[4] HU X, WANG Y, GAO L, et al. The impairment of methyl metabolism from luxS mutation of Streptococcus mutans [J]. Front Microbiol, 2018, 9: 404 − 415. doi:  10.3389/fmicb.2018.00404
[5] REN Z, CHEN L, LI J, et al. Inhibition of Streptococcus mutans polysaccharide synthesis by molecules targeting glycosyltransferase activity [J]. J Oral Microbiol, 2016, 8: 31095 − 31104. doi:  10.3402/jom.v8.31095
[6] CAI Y, LIAO Y, BRANDT B W, et al. The fitness cost of fluoride resistance for different Streptococcus mutans strains in biofilms [J]. Front Microbiol, 2017, 8: 1630 − 1638. doi:  10.3389/fmicb.2017.01630
[7] CHAKRABORTY B, BURNE R A. Effects of arginine on Streptococcus mutans growth, virulence gene expression, and stress tolerance [J]. Appl Environ Microbiol, 2017, 83: e496 − e417.
[8] HU X, HUANG Y Y, WANG Y, et al. Antimicrobial photodynamic therapy to control clinically relevant biofilm infections [J]. Front Microbiol, 2018, 9: 1299 − 1323. doi:  10.3389/fmicb.2018.01299
[9] ONG K S, MAWANG C I. , DANIEL-JAMBUN D, et al. Current anti-biofilm strategies and potential of antioxidants in biofilm control [J]. Expert Rev Anti Infect Ther, 2018, 16: 855 − 864. doi:  10.1080/14787210.2018.1535898
[10] KOUIDHI B, AL QURASHI Y M, CHAIEB K. Drug resistance of bacterial dental biofilm and the potential use of natural compounds as alternative for prevention and treatment [J]. Microb. Pathog, 2015, 80: 39 − 49. doi:  10.1016/j.micpath.2015.02.007
[11] SHREAZ S, BHATIA R, KHAN N, et al. Exposure of candida to p-anisaldehyde inhibits its growth and ergosterol biosynthesis [J]. J. Gen Appl Microbiol, 2011, 57: 129 − 136. doi:  10.2323/jgam.57.129
[12] SHOWLER A T, HARLIEN J L. Lethal and repellent effects of the botanical p-anisaldehyde on Musca domestica (Diptera: Muscidae) [J]. J Econ Entomol, 2019, 112: 485 − 493. doi:  10.1093/jee/toy351
[13] CHEN X, ZHANG X, MENG R, et al. Efficacy of a combination of nisin and p-anisaldehyde against Listeria monocytogenes [J]. Food Control, 2016, 66: 100 − 106. doi:  10.1016/j.foodcont.2016.01.025
[14] SHI C, ZHAO X, MENG R, et al. Synergistic antimicrobial effects of nisin and p-anisaldehyde on Staphylococcus aureus in pasteurized milk [J]. Lwt-Food Sci Technol, 2017, 84: 222 − 230. doi:  10.1016/j.lwt.2017.05.056
[15] YU L, GUO N, YANG Y, et al. Microarray analysis of p-anisaldehyde-induced transcriptome of Saccharomyces cerevisiae [J]. J Ind Microbiol Biotechnol, 2010, 37: 313 − 322. doi:  10.1007/s10295-009-0676-y
[16] 张冠楠. 茴香醛抗金黄色葡萄球菌的活性及机制研究[D]. 长春: 吉林大学, 2016.
[17] CHE J, CHEN X, OUYANG Q, et al. p-Anisaldehyde exerts its antifungal activity against Penicillium digitatum and Penicillium italicum by disrupting the cell wall integrity and membrane permeability [J]. J Microbiol Biotechnol, 2019, 28,30(6): 878 − 884.
[18] GRENIER D, CHEN H, BEN LAGHA A, et al. Dual action of myricetin on Porphyromonas gingivalis and the inflammatory response of host cells: A promising therapeutic molecule for periodontal diseases [J]. PLoS ONE, 2015, 10(6): e0131758 − 772. doi:  10.1371/journal.pone.0131758
[19] WANG Y, ZHANG Y, SHI Y Q, et al. Antibacterial effects of cinnamon (Cinnamomum zeylanicum) bark essential oil on Porphyromonas gingivalis [J]. Microbial Pathogenesis, 2018, 116: 26 − 32. doi:  10.1016/j.micpath.2018.01.009
[20] BRADFORD. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein -dye binding [J]. Anal Biochem, 1976(72): 248 − 254.
[21] 钟亨任. 海南沼蛙Temporin及Brevinin抗菌肽对革兰氏阳性菌生物被膜的抑制作用[D]. 海口: 海南大学, 2019.
[22] HE Z, HUANG Z, JIANG W, et al. Antimicrobial Activity of Cinnamaldehyde on Streptococcus mutans Biofilms [J]. Frontiers in microbiology, 2019, 10: 2241 − 2255. doi:  10.3389/fmicb.2019.02241
[23] TAO N, FAN F, JIA L, et al. Octanal incorporated in postharvest wax of Satsuma mandarin fruit as a botanical fungicide against Penicillium digitatum [J]. Food Control, 2014, 45: 56 − 61. doi:  10.1016/j.foodcont.2014.04.025
[24] NERI F, MARI M, BRIGATI S, et al. Control of Neofabraea alba by plant volatile compounds and hot water [J]. Postharvest Biology and Technology, 2009, 51: 425 − 430.
[25] SHAROPOV F, VALIEV A, SATYAL P, et al. Cytotoxicity of the essential oil of fennel (Foeniculum vulgare) from Tajikistan [J]. Foods, 2017, 6: 73 − 84. doi:  10.3390/foods6090073
[26] ZHANG J, WU H, JIANG D, et al. The antifungal activity of essential oil from Melaleuca leucadendra (L.) grown in China and its synergistic effects with conventional antibiotics against Candida [J]. Nat Prod Res, 2019, 33: 2545 − 2548. doi:  10.1080/14786419.2018.1448979
[27] KANG J, LIU L, WU X, et al. Effect of thyme essential oil against Bacillus cereus planktonic growth and biofilm formation [J]. Appl Microbiol Biotechnol, 2019, 102: 10209 − 10218.
[28] DA ROCHA NETO A C, NAVARRO B B, CANTON L, et al. Antifungal activity of palmarosa (Cymbopogon martinii), tea tree (Melaleuca alternifolia) and star anise (Illicium verum) essential oils against Penicillium expansum and their mechanisms of action [J]. Lwt-Food Sci Technol, 2019, 105: 385 − 392. doi:  10.1016/j.lwt.2019.02.060
[29] 高洁, 赵玮钦, 程政. 石榴皮原花青素对变异链球菌生物膜形成及相关毒力基因表达的影响[J]. 山西医科大学学报, 2020, 51(8): 847 − 851. doi:  10.13753/j.issn.1007-6611.2020.08.018
[30] 税钰森, 杨燃. 积雪草酸抑制变异链球菌生物膜形成及致龋能力的研究[J]. 口腔医学研究, 2021, 37(5): 401 − 406. doi:  10.13701/j.cnki.kqyxyj.2021.05.006
[31] 郑沛, 张羽, 汪飒. 茶黄素对变异链球菌浮游细菌和生物膜的体外抑制作用[J]. 上海口腔医学, 2021, 30(1): 33 − 37. doi:  10.19439/j.sjos.2021.01.007