[1] 刘永花, 李琼. 中国特色热带植物种质资源库[J]. 中国农村科技, 2020, 302(7): 19 − 24.
[2] 张慧坚, 曾小红, 刘晓光, 等. 国内外热带作物生产与科技发展研究综述[J]. 农学学报, 2018, 8(3): 69 − 77.
[3] 杨逢春, 胡新文. 我国热带药用植物开发现状(综述)[J]. 亚热带植物科学, 2006(2): 78 − 80.
[4] 孙南君, 薛智, 梁晓天, 等. 新抗癌有效成分海南粗榧内酯(Hainanolide)结构的研究[J]. 药学学报, 1979(1): 41 − 46.
[5] 林思, 秦慧真, 邓玲玉, 等. 胡椒碱的药理作用及机制研究进展[J]. 中国药房, 2022, 33(13): 1653 − 1659.
[6] 张春江, 吕飞杰, 陶海腾. 槟榔活性成分及其功能作用的研究进展[J]. 中国食物与营养, 2008(6): 50 − 53.
[7] 郝小江. 植物化学与天然新药研究之管见[J]. 贵州科学, 2000(Z1): 26 − 30.
[8] HALL R D, D’AURIA J C, SILVA F A C, et al. High-throughput plant phenotyping: A role for metabolomics? [J]. Trends in Plant Science, 2022, 27(6): 549 − 563. doi:  10.1016/j.tplants.2022.02.001
[9] GONDA S. Special issue: Plant metabolomics [J]. Metabolites, 2020, 10(11): 467. doi:  10.3390/metabo10110467
[10] ALSEEKH S, AHARONI A, BROTMAN Y, et al. Mass spectrometry-based metabolomics: A guide for annotation, quantification and best reporting practices [J]. Nature Methods, 2021, 18(7): 747 − 756. doi:  10.1038/s41592-021-01197-1
[11] ALSEEKH S, FERNIE A R. Metabolomics 20 years on: What have we learned and what hurdles remain? [J]. The Plant Journal, 2018, 94(6): 933 − 942. doi:  10.1111/tpj.13950
[12] DEBORDE C, MOING A, ROCH L, et al. Plant metabolism as studied by NMR spectroscopy [J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 2017, 102/103: 61 − 97. doi:  10.1016/j.pnmrs.2017.05.001
[13] BRUNELLI C, BICCHI C, DI S A, et al. High-speed gas chromatography in doping control: Fast-GC and fast-GC/MS determination of beta-adrenoceptor ligands and diuretics [J]. Journal of Separation Science, 2006, 29(18): 2765 − 2771. doi:  10.1002/jssc.200500387
[14] REN J L, ZHANG A H, KONG L, et al. Advances in mass spectrometry-based metabolomics for investigation of metabolites [J]. RSC Advances, 2018, 8(40): 22335 − 22350. doi:  10.1039/C8RA01574K
[15] PLUMB R S, GETHINGS L A, RAINVILLE P D, et al. Advances in high throughput LC/MS based metabolomics: A review [J]. TRAC Trends in Analytical Chemistry, 2023, 160: 116954. doi:  10.1016/j.trac.2023.116954
[16] GIKA H, VIRGILIOU C, THEODORIDIS G, et al. Untargeted LC/MS-based metabolic phenotyping (metabonomics/metabolomics): The state of the art [J]. Journal of Chromatography B, 2019, 1117: 136 − 147. doi:  10.1016/j.jchromb.2019.04.009
[17] CHRISTIANS U, KLEPACKI J, SHOKATI T, et al. Mass spectrometry-based multiplexing for the analysis of biomarkers in drug development and clinical diagnostics-how much is too much? [J]. Microchemical Journal, 2012, 105: 32 − 38. doi:  10.1016/j.microc.2012.02.011
[18] SAWADA Y, AKIYAMA K, SAKATA A, et al. Widely targeted metabolomics based on large-scale MS/MS data for elucidating metabolite accumulation patterns in plants [J]. Plant and Cell Physiology, 2008, 50(1): 37 − 47.
[19] CHEN W, GONG L, GUO Z L, et al. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics [J]. Molecular Plant, 2013, 6(6): 1769 − 1780. doi:  10.1093/mp/sst080
[20] ZHENG F J, ZHAO X J, ZENG Z D, et al. Development of a plasma pseudotargeted metabolomics method based on ultra-high-performance liquid chromatography–mass spectrometry [J]. Nature Protocols, 2020, 15(8): 2519 − 2537. doi:  10.1038/s41596-020-0341-5
[21] WURTZEL E T, KUTCHAN T M. Plant metabolism, the diverse chemistry set of the future [J]. Science, 2016, 353(6305): 1232 − 1236. doi:  10.1126/science.aad2062
[22] TOHGE T, FERNIE A R. Metabolomics-inspired insight into developmental, environmental and genetic aspects of tomato fruit chemical composition and quality [J]. Plant and Cell Physiology, 2015, 56(9): 1681 − 1696. doi:  10.1093/pcp/pcv093
[23] TOUBIANA D, SEMEL Y, TOHGE T, et al. Metabolic profiling of a mapping population exposes new insights in the regulation of seed metabolism and deed, fruit, and plant relations [J]. PLOS Genetics, 2012, 8(3): e1002612. doi:  10.1371/journal.pgen.1002612
[24] 刘贤青, 罗杰. 植物代谢组学技术研究进展[J]. 科技导报, 2015, 33(16): 33 − 38.
[25] ZHU G T, WANG S C, HUANG Z J, et al. Rewiring of the fruit metabolome in tomato breeding [J]. Cell, 2018, 172(1): 249 − 261.
[26] DE L P R, HODGSON H, LIU J C, et al. Complex scaffold remodeling in plant triterpene biosynthesis [J]. Science, 2023, 379(6630): 361 − 368. doi:  10.1126/science.adf1017
[27] CAPUTI L, FRANKE J, FARROW S C, et al. Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle [J]. Science, 2018, 360(6394): 1235 − 1239. doi:  10.1126/science.aat4100
[28] NETT R S, LAU W, SATTELY E S. Discovery and engineering of colchicine alkaloid biosynthesis [J]. Nature, 2020, 584(7819): 148 − 153. doi:  10.1038/s41586-020-2546-8
[29] PLUSKAL T, TORRENS-SPENCE M P, FALLON T R, et al. The biosynthetic origin of psychoactive kavalactones in kava [J]. Nature Plants, 2019, 5(8): 867 − 878. doi:  10.1038/s41477-019-0474-0
[30] ZHANG Y F, GAO J, MA L, et al. Tandemly duplicated CYP82Ds catalyze 14-hydroxylation in triptolide biosynthesis and precursor production in saccharomyces cerevisiae [J]. Nature Communications, 2023, 14(1): 875. doi:  10.1038/s41467-023-36353-y
[31] GUO H, CAO P, WANG C, et al. Population analysis reveals the roles of DNA methylation in tomato domestication and metabolic diversity [J]. Science China Life Sciences, 2023: DOI: 10.1007/s11427-022-2299-5.
[32] ARUMUGAM T, HATTA M A M. Improving coconut using modern breeding technologies: Challenges and opportunities [J]. Plants, 2022, 11(24): 3414. 起止页码?

ARUMUGAM T, HATTA M A M. Improving coconut using modern breeding technologies: Challenges and opportunities[J]. Plants, 2022, 11(24): 3414.
[33] 卢丽兰, 刘蕊, 肖勇, 等. 椰子种质资源、栽培与利用研究进展[J]. 热带作物学报, 2021, 42(6): 1795 − 1803.
[34] CHIKKASUBBANNA V, JAYAPRASAD K V, SUBBAIAH T, et al. Effect of maturity on the chemical composition of tender coconut (Cocos nuciferaL. var. Arsikere Tall) water [J]. Indian Coconut Journal, 1990, 20(12): 13.
[35] 邓渊, 赖军, 毛梦迪, 等. 通过整合转录组与代谢组解析不同类型椰子的脂肪酸调控网络[J]. 热带生物学报, 2022, 13(5): 478 − 487.
[36] GUO H, LAI J, LI C, et al. Comparative metabolomics reveals key determinants in the flavor and nutritional value of Coconut by HS-SPME/GC-MS and UHPLC-MS/MS [J]. Metabolites, 2022, 12(8): 691. doi:  10.3390/metabo12080691
[37] MAHAYOTHEE B, KOOMYART I, KHUWIJITJARU P, et al. Phenolic compounds, antioxidant activity, and medium chain fatty acids profiles of coconut water and meat at different maturity stages [J]. International Journal of Food Properties, 2016, 19(9): 2041 − 2051. doi:  10.1080/10942912.2015.1099042
[38] XU S Z, MA Z W, CHEN Y, et al. Characterization of the flavor and nutritional value of coconut water vinegar based on metabolomics [J]. Food Chemistry, 2022, 369: 130872. doi:  10.1016/j.foodchem.2021.130872
[39] XIAO Y, XU P W, FAN H K, et al. The genome draft of coconut (Cocos nucifera) [J]. GigaScience, 2017, 6(11): 1 − 11.
[40] WANG S C, XIAO Y, ZHOU Z W, et al. High-quality reference genome sequences of two coconut cultivars provide insights into evolution of monocot chromosomes and differentiation of fiber content and plant height [J]. Genome Biology, 2021, 22(1): 304. doi:  10.1186/s13059-021-02522-9
[41] 李国华, 田耀华, 倪书邦, 等. 橡胶树生理生态学研究进展[J]. 生态环境学报, 2009, 18(3): 1146 − 1154.
[42] LIU J, SHI C, SHI C C, et al. The Chromosome-based rubber tree genome provides new insights into spurge genome evolution and rubber biosynthesis [J]. Molecular Plant, 2020, 13(2): 336 − 350. doi:  10.1016/j.molp.2019.10.017
[43] 邹智, 杨礼富, 王真辉, 等. 橡胶树中橡胶的生物合成与调控[J]. 植物生理学通讯, 2009, 45(12): 1231-1238.
[44] 毛常丽, 李玲, 杨恬, 等. 橡胶树云研 77-4 无性系幼苗 低温胁迫后的代谢组学分析[J/OL]. 分子植物育种, (2022-03-24)[2023-04-01]. https://kns.cnki.net/kcms/detail/46.1068.S.20220322.204 1.012.html.
[45] TANG C R, YANG M, FANG Y J, et al. The rubber tree genome reveals new insights into rubber production and species adaptation [J]. Nature Plants, 2016, 2(6): 16073. doi:  10.1038/nplants.2016.73
[46] CHENG H, SONG X M, HU Y S, et al. Chromosome-level wild Hevea brasiliensis genome provides new tools for genomic-assisted breeding and valuable loci to elevate rubber yield [J]. Plant Biotechnology Journal, 2023, 21(5): 1058 − 1072. doi:  10.1111/pbi.14018
[47] SINGH R, ONG A M, LOW E T, et al. Oil palm genome sequence reveals divergence of interfertile species in old and new worlds [J]. Nature, 2013, 500(7462): 335 − 339. doi:  10.1038/nature12309
[48] ROCHMYANINGSIH D. Making peace with oil palm [J]. Science, 2019, 365(6449): 112 − 115. doi:  10.1126/science.365.6449.112
[49] 周丽霞, 雷新涛, 曹红星. GC-MS分析不同品种油棕果肉中的脂肪酸组分[J]. 南方农业学报, 2019, 50(5): 1072 − 1077.
[50] TEH H F, NEOH B K, HONG M P, et al. Differential metabolite profiles during fruit development in high-yielding oil palm mesocarp [J]. PloS One, 2013, 8(4): e61344. doi:  10.1371/journal.pone.0061344
[51] NEOH B K, TEH H F, NG T L, et al. Profiling of metabolites in oil palm mesocarp at different stages of oil biosynthesis [J]. Journal of Agricultural and Food Chemistry, 2013, 61(8): 1920 − 1927. doi:  10.1021/jf304561f
[52] ROZALI N L, TAHIR N I, HASSAN H, et al. Identification of amines, amino and organic acids in oil palm (Elaeis guineensis Jacq. ) spear leaf using GC- and LC/Q-TOF MS metabolomics platforms [J]. Biocatalysis and Agricultural Biotechnology, 2021, 37: 102165. doi:  10.1016/j.bcab.2021.102165
[53] SINGH R, LOW E T, OOI L C, et al. The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK [J]. Nature, 2013, 500(7462): 340 − 344. doi:  10.1038/nature12356
[54] 周丽霞, 吴翼, 张安妮, 等. 基于转录组测序的油棕脂肪酸合成基因的筛选及分析[J]. 分子植物育种, 2023, 21(5): 1468 − 1474.
[55] PROCHNIK S, MARRI P R, DESANY B, et al. The cassava genome: Current progress, future directions [J]. Tropical Plant Biology, 2012, 5(1): 88 − 94. doi:  10.1007/s12042-011-9088-z
[56] WANG W, F B, XIAO J, et al. Cassava genome from a wild ancestor to cultivated varieties [J]. Nature Communications, 2014, 5(1): 5110. doi:  10.1038/ncomms6110
[57] 王颖, 张雅媛, 尚小红, 等. 食用木薯的营养价值及其保健功效研究进展[J]. 安徽农业科学, 2019, 11(2): 40 − 43.
[58] 吴金山, 王思琦, 耿梦婷, 等. 3个不同木薯品种的代谢产物解析[J]. 热带作物学报, 2022, 43(11): 2356 − 2365.
[59] ROSADO S L, DAVID L C, DRAPAL M, et al. Cassava metabolomics and starch quality [J]. Current Protocols in Plant Biology, 2019, 4(4): e20102.
[60] FU L L, DING Z, TIE W W, et al. Integrated metabolomic and transcriptomic analyses reveal novel insights of anthocyanin biosynthesis on color formation in cassava tuberous toots [J]. Frontiers in Nutrition, 2022, 5(9): 842693.
[61] DING Z H, FU L L, TIE W W, et al. Highly dynamic, coordinated, and stage-specific profiles are revealed by a multi-omics integrative analysis during tuberous root development in cassava [J]. Journal of Experimental Botany, 2020, 71(22): 7003 − 7017. doi:  10.1093/jxb/eraa369
[62] ZHONG Z H, FENG S H, MANSFELD B N, et al. Haplotype-resolved DNA methylome of African cassava genome [J]. Plant Biotechnology Journal, 2023, 21(2): 247 − 249. doi:  10.1111/pbi.13955
[63] HU W, JI C M, LIANG Z, et al. Resequencing of 388 cassava accessions identifies valuable loci and selection for variation in heterozygosity [J]. Genome Biology, 2021, 22(1): 316. doi:  10.1186/s13059-021-02524-7
[64] 易攀, 汤嫣然, 周芳, 等. 槟榔的化学成分和药理活性研究进展[J]. 中草药, 2019, 50(10): 2498 − 2504.
[65] PENG W, LIU Y J, WU N, et al. Areca catechu L. (Arecaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology [J]. Journal of Ethnopharmacology, 2015, 164: 340 − 356. doi:  10.1016/j.jep.2015.02.010
[66] WU J, CUI C, ZHANG H, et al. Identifying new compounds with potential pharmaceutical and physiological activity in Areca catechu and Areca triandra via a non-targeted metabolomic approach [J]. Phytochemical Analysis, 2021, 32(6): 970 − 981. doi:  10.1002/pca.3039
[67] 徐航, 刘贤青, 袁弘伦, 等. 槟榔碱合成前体物质的空间分布及槟榔碱合成通路解析[J]. 热带生物学报, 2021, 12(3): 271 − 278.
[68] LAI J, LI C, ZHANG Y R, et al. Integrated transcriptomic and metabolomic analyses reveal the molecular and metabolic basis of flavonoids in Areca catechu L [J]. Journal of Agricultural and Food Chemistry, 2023, 71(12): 4851 − 4862. doi:  10.1021/acs.jafc.2c08864
[69] ZHOU G Z, YIN H Y, CHEN F, et al. The genome of Areca catechu provides insights into sex determination of monoecious plants [J]. New Phytologist, 2022, 236(6): 2327 − 2343. doi:  10.1111/nph.18471
[70] 张晓旭, 周锡钦, 刘红芹, 等. 胡椒碱的提取分离及检测方法的研究进展[J]. 热带作物学报, 2018, 39(5): 1030 − 1037.
[71] 于岚, 郝正一, 胡晓璐, 等. 胡椒的化学成分与药理作用研究进展[J]. 中国实验方剂学杂志, 2020, 26(6): 234 − 242.
[72] GORGANI L, MOHAMMADI M, NAJAFPOUR G D, et al. Piperine—the bioactive compound of black pepper: from isolation to medicinal formulations [J]. Comprehensive Reviews in Food Science and Food Safety, 2017, 16(1): 124 − 140. doi:  10.1111/1541-4337.12246
[73] 葛畅, 李明福, 张园, 等. 胡椒鲜果果皮化学成分定性分析[J]. 中国调味品, 2015, 40(6): 109 − 110.
[74] 胡丽松, 邬华松, 范睿, 等. 胡椒碱生物合成机理研究进展[J]. 热带作物学报, 2016, 37(5): 1050 − 1058.
[75] RIVERA P A, ROMERO G R, GARRIDO F A. Feasibility of applying untargeted metabolomics with GC-Orbitrap-HRMS and chemometrics for authentication of black pepper (Piper nigrum L. ) and identification of geographical and processing markers [J]. Journal of Agricultural and Food Chemistry, 2021, 69(19): 5547 − 5558. doi:  10.1021/acs.jafc.1c01515
[76] HU L S, XU Z P, WANG M J, et al. The chromosome-scale reference genome of black pepper provides insight into piperine biosynthesis [J]. Nature Communications, 2019, 10(1): 4702. doi:  10.1038/s41467-019-12607-6
[77] KHEW C Y, HARIKRISHNA J A, WEE W Y, et al. Transcriptional sequencing and gene expression analysis of various genes in fruit development of three different black pepper (Piper nigrum L. ) varieties [J]. International Journal of Genomics, 2020, 2020: 1540915.
[78] 林玲, 黄川腾, 陈飞飞, 等. 海南粗榧研究进展[J]. 热带林业, 2021, 49(1): 13 − 17.
[79] ABDELKAFI H, NAY B. Natural products from Cephalotaxus sp. : chemical diversity and synthetic aspects [J]. Natural Product Reports, 2012, 29(8): 845 − 869. doi:  10.1039/c2np20037f
[80] JIN J, WANG J X, CHEN F F, et al. Homoharringtonine-based induction regimens for patients with de-novo acute myeloid leukaemia: a multicentre, open-label, randomised, controlled phase 3 trial [J]. Lancet Oncology, 2013, 14(7): 599 − 608. doi:  10.1016/S1470-2045(13)70152-9
[81] KANTARJIAN H M, O'BRIEN S, CORTES J. Homoharringtonine/omacetaxine mepesuccinate: the long and winding road to food and drug administration approval [J]. Clinical Lymphoma, Myeloma & Leukemia, 2013, 13(5): 530 − 533.
[82] 孙化鹏, 王荣香, 丛汉卿, 等. GC-MS联用技术分析海南粗榧中三尖杉生物碱类化合物[J]. 中药材, 2018, 41(10): 2392 − 2394.
[83] 于淼, 黄圣卓, 张宇, 等. 海南粗榧总碱中化学成分研究[J]. 中草药, 2019, 50(7): 1541 − 1545.
[84] QIAO F, HE Y D, ZHANG Y H, et al. Elucidation of the 1-phenethylisoquinoline pathway from an endemic conifer Cephalotaxus hainanensis [J]. Proceedings of the National Academy of Sciences, 2023, 120(1): e2209339120. doi:  10.1073/pnas.2209339120
[85] 段立胜, 张丽霞, 彭建明, 等. 西双版纳阳春砂仁种质资源调查初报[J]. 时珍国医国药, 2009, 20(3): 627 − 628.
[86] CAI R B, YUE X Y, WANG Y L, et al. Chemistry and bioactivity of plants from the genus Amomum [J]. Journal of Ethnopharmacology, 2021, 281: 114563. doi:  10.1016/j.jep.2021.114563
[87] 陆山红, 赵荣华, 幺晨, 等. 砂仁的化学及药理研究进展[J]. 中药药理与临床, 2016, 32(1): 227 − 230.
[88] 杨东生, 张越, 舒艳, 等. 砂仁化学成分及药理作用的研究进展[J]. 广东化工, 2022, 49(8): 111 − 114.
[89] 李宗主, 潘瑞乐, 李展, 等. 阳春砂仁中总黄酮、异槲皮苷和槲皮苷含量测定研究[J]. 科技导报, 2009, 27(9): 30 − 33.
[90] SHENG T Z, ZHAO Y W, TIE S W, et al. Composition and antimicrobial activities of essential oil of Fructus Amomi [J]. Natural Product Research and Development, 2011, 23(3): 464 − 472.
[91] AO H, WANG J, CHEN L, et al. Comparison of volatile oil between the fruits of Amomum villosum Lour. and Amomum villosum Lour. var. xanthioides T. L. Wu et Senjen based on GC-MS and chemometric techniques [J]. Molecules, 2019, 24(9): 1663. doi:  10.3390/molecules24091663
[92] ZHAO H Y, LI M, ZHAO Y Y, et al. A comparison of two monoterpenoid synthases reveals molecular mechanisms associated with the difference of bioactive monoterpenoids between Amomum villosum and Amomum longiligulare [J]. Frontiers in Plant Science, 2021, 12: 695551. doi:  10.3389/fpls.2021.695551
[93] PERLO V, FURTADO A, BOTHA F C, et al. Transcriptome and metabolome integration in sugarcane through culm development [J]. Food and Energy Security, 2022, 11(4): e421.
[94] ALI S, EL G R, MOCAN A, et al. Profiling metabolites and biological activities of sugarcane (Saccharum officinarum Linn. ) juice and its product molasses via a multiplex metabolomics approach [J]. Molecules, 2019, 24(5): 934. doi:  10.3390/molecules24050934
[95] ZHANG J S, ZHANG X T, TANG H B, et al. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L [J]. Nature Plants, 2018, 50(12): 1754.
[96] FONSECA J G, CALDERAN-RODRIGUES M J, DE MORAES F E, et al. Cell wall proteome of sugarcane young and mature leaves and stems [J]. Proteomics, 2018, 18(2): 1700129. doi:  10.1002/pmic.201700129
[97] 陈宏著, 邓新宇, 黄达荣, 等. 牛油果油的营养成分和功效研究进展[J]. 中国油脂, 2022, 47(8): 90 − 96.
[98] DAVID O, SUE C, JAMES S, et al. Influence of maturity and ripening on aroma volatiles and flavor in ‘Hass’ avocado [J], Postharvest Biology and Technology, 2012, 71: 41-50.
[99] RENDÓN A M, IBARRA L E, MÉNDEZ B A, et al. The avocado genome informs deep angiosperm phylogeny, highlights introgressive hybridization, and reveals pathogen-influenced gene space adaptation [J]. Proceedings of the National Academy of Sciences, 2019, 116(34): 17081 − 17089. doi:  10.1073/pnas.1822129116
[100] IGNACIA H, VIRGILIO U, CLAUDIA F, et al. Transcriptome and hormone analyses reveals differences in physiological age of ′Hass′ avocado fruit [J]. Postharvest Biology and Technology, 2022, 185: 111806. doi:  10.1016/j.postharvbio.2021.111806
[101] RIGHETTI P G, ESTEVE C, D'AMATO A, et al. A sarabande of tropical fruit proteomics: Avocado, banana, and mango [J]. Proteomics, 2015, 15(10): 1639 − 1645. doi:  10.1002/pmic.201400325
[102] 杨凤, 刘灿灿, 邓贵明, 等. 香蕉营养品质与功能特性研究进展[J]. 广东农业科学, 2022, 49(10): 146 − 154.
[103] WANG Z, MIAO H X, LIU J H. et al. Musa balbisiana genome reveals subgenome evolution and functional divergence [J]. Nature Plants, 2019, 5(8): 810 − 821. doi:  10.1038/s41477-019-0452-6
[104] LI T T, YUN Z, WU Q X, et al. Combination of transcriptomic, proteomic, and metabolomic analysis reveals the ripening mechanism of banana pulp [J]. Biomolecules, 2019, 9(10): 523. doi:  10.3390/biom9100523
[105] ZHAO L, ZHANG B, HUANG H J, et al. Metabolomic and transcriptomic analyses provide insights into metabolic networks during cashew fruit development and ripening [J]. Food Chemistry, 2023, 404: 134765. doi:  10.1016/j.foodchem.2022.134765
[106] BICALHO B, PEREIRA A S, AQUINO N F, et al. Application of high-temperature gas chromatography-mass spectrometry to the investigation of glycosidically bound components related to cashew apple (Anacardium occidentale L. var. Nanum) volatiles [J]. Journal of agricultural and food chemistry, 2000, 48(4): 1167 − 1174. doi:  10.1021/jf9909252
[107] SAVADI S, MURALIDHARA B M, GODWIN J, et al. De novo assembly and characterization of the draft genome of the cashew (Anacardium occidentale L. ) [J]. Scientific Reports, 2022, 12(1): 18187. doi:  10.1038/s41598-022-22600-7
[108] CHEN S, DOWNS M L. Proteomic analysis of oil-roasted cashews using a customized allergen-focused protein database [J]. Journal of Proteome Research, 2022, 21(7): 1694 − 1706. doi:  10.1021/acs.jproteome.2c00095
[109] LI F P, WU B D, YAN L, et al. Metabolome and transcriptome profiling of Theobroma cacao provides insights into the molecular basis of pod color variation [J]. Journal of Plant Research, 2021, 134(6): 1323 − 1334. doi:  10.1007/s10265-021-01338-9
[110] COLONGES K, JIMENEZ J C, SALTOS A, et al. Integration of GWAS, metabolomics, and sensorial analyses to reveal novel metabolic pathways involved in cocoa fruity aroma GWAS of fruity aroma in Theobroma cacao [J]. Plant Physiology and Biochemistry, 2022, 171: 213 − 225. doi:  10.1016/j.plaphy.2021.11.006
[111] ARGOUT X, SALSE J, AURY J M, et al. The genome of Theobroma cacao [J]. Nature Genetics, 2011, 43: 101 − 108. doi:  10.1038/ng.736
[112] SCOLLO E, NEVILLE D, ORUNA-CONCHA M J, et al. Characterization of the proteome of Theobroma cacao beans by Nano-UHPLC-ESI MS/MS [J]. Proteomics, 2018, 18: 3 − 4.
[113] 苗玥, 谭超, 彭春秀, 等. 基于UHPLC-QE-MS代谢组学分析小粒种咖啡豆特征成分[J]. 中国食品学报, 2022, 22(11): 355 − 367.
[114] 张梦娇, 王蓓, 李妍, 等. 咖啡中的特征风味组分研究进展[J]. 食品研究与开发, 2016, 37(16): 213 − 219.
[115] ALEXIS D, STéPHANIE B, MATHIEU R, et al. The coffee genome hub: a resource for coffee genomes [J]. Nucleic Acids Research, 2015, 43(6): 1028 − 1035.
[116] CHENG B, FURTADO A, HENRY R J, et al. The coffee bean transcriptome explains the accumulation of the major bean components through ripening [J]. Scientific Reports, 2018, 8(1): 11414. doi:  10.1038/s41598-018-29842-4
[117] LIVRAMENTO K G D, BORéM F M, JOSé A C, et al. Proteomic analysis of coffee grains exposed to different drying process [J]. Food Chemistry, 2017, 221: 1874 − 1882. doi:  10.1016/j.foodchem.2016.10.069
[118] WANG J, GUO D L, HAN D M, et al. A comprehensive insight into the metabolic landscape of fruit pulp, peel, and seed in two longan (Dimocarpus longan Lour. ) varieties [J]. International Journal of Food Properties, 2020, 23(1): 1527 − 1539. doi:  10.1080/10942912.2020.1815767
[119] 范妍, 尹金华, 李昕悦, 等. SPME/GC-MS法分析不同龙眼品种果实中的香气成分[J]. 热带农业科学, 2014, 34(11): 89 − 93.
[120] WANG J, LI J G, LI Z Y, et al. Genomic insights into longan evolution from a chromosome-level genome assembly and population genomics of longan accessions [J]. Horticulture Research, 2022, 9(2): 21.
[121] YI D B, ZHANG H N, LAI B, et al. Integrative analysis of the coloring mechanism of red longan pericarp through metabolome and transcriptome analyses [J]. Journal of Agricultural and Food Chemistry, 2021, 69(6): 1806 − 1815. doi:  10.1021/acs.jafc.0c05023
[122] JUE D W, LIU L Q, SANG X L, et al. A comparative proteomic analysis provides insight into the molecular mechanism of bud break in longan [J]. BMC Plant Biology, 2022, 22(1): 486. doi:  10.1186/s12870-022-03868-3
[123] 吴启贤. 基于代谢组学的番木瓜果实后熟调控的机理解析[D]. 北京: 中国科学院大学, 2019.
[124] 陈燕, 郑剑, 余江敏, 等. 番木瓜转录组学研究进展[J]. 中国果树, 2022(8): 1 − 5.
[125] YUE J, VANBUREN R, LIU J, et al. SunUp and Sunset genomes revealed impact of particle bombardment mediated transformation and domestication history in papaya [J]. Nature Genetics, 2022, 54(5): 715 − 724. doi:  10.1038/s41588-022-01068-1
[126] JIANG B, OU S Y, XU L, et al. Comparative proteomic analysis provides novel insights into the regulation mechanism underlying papaya (Carica papaya L.) exocarp during fruit ripening process [J]. BMC Plant Biology, 2019, 19(1): 238. doi:  10.1186/s12870-019-1845-4
[127] 刘传和, 贺涵, 邵雪花, 等. 不同抗逆性菠萝品种的差异基因和差异代谢物分析[J]. 西北植物学报, 2022, 42(9): 1514 − 1522.
[128] 刘胜辉, 孙伟生, 陆新华, 等. 6个菠萝品种成熟果实香气成分分析[J]. 热带作物学报, 2015, 36(6): 1179 − 1185.
[129] CHEN L Y, VANBUREN R, PARIS M, et al. The bracteatus pineapple genome and domestication of clonally propagated crops [J]. Nature Genetics, 2019, 51(10): 1549 − 1558. doi:  10.1038/s41588-019-0506-8
[130] BOJÓRQUEZ-VELÁZQUEZ E, ELIZALDE-CONTRERAS J M, ZAMORA-BRISEÑO J A, et al. Efficient protein extraction protocols for NanoLC-MS/MS proteomics analysis of plant tissues with high proteolytic activity: a case study with pineapple pulp [J]. Methods in Molecular Biology, 2022, 2512: 281 − 290.
[131] BOURGIS F, KILARU A, CAO X, et al. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning [J]. Proceedings of the National Academy of Sciences, 2011, 108(30): 12527 − 12532. doi:  10.1073/pnas.1106502108
[132] 李东霞, 徐中亮, 符海泉, 等. 不同椰枣种质资源果实糖酸组分和营养元素含量分析[J]. 西南农业学报, 2020, 33(7): 1566 − 1572.
[133] GROS-BALTHAZARD M, FLOWERS J M, HAZZOURI K M, et al. The genomes of ancient date palms germinated from 2, 000 y old seeds [J]. Proceedings of the National Academy of Sciences, 2021, 118(19): e2025337118. doi:  10.1073/pnas.2025337118