[1] YANG Y, SONG W, LIN H, et al. Antibiotics and antibiotic resistance genes in global lakes: A review and meta-analysis [J]. Environment International, 2018, 116: 60 − 73. doi:  10.1016/j.envint.2018.04.011
[2] 叶必雄, 张岚. 环境水体及饮用水中抗生素污染现状及健康影响分析[J]. 环境与健康杂志, 2015, 32(2): 173 − 178.
[3] 朱光平, 吴南翔, 范宏亮. 环境中抗生素抗性基因的去除方法[J]. 环境与职业医学, 2019, 36(12): 1168 − 1174.
[4] WANG Z, HAN M, LI E, et al. Distribution of antibiotic resistance genes in an agriculturally disturbed lake in China: Their links with microbial communities, antibiotics, and water quality [J]. Journal of Hazardous Materials, 2020, 393: 122426. doi:  10.1016/j.jhazmat.2020.122426
[5] SHARMA V K, JOHNSON N, CIZMAS L, et al. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes [J]. Chemosphere, 2016, 150: 702 − 714. doi:  10.1016/j.chemosphere.2015.12.084
[6] DONG H, CHEN Y, WANG J, et al. Interactions of microplastics and antibiotic resistance genes and their effects on the aquaculture environments [J]. Journal of Hazardous Materials, 2021, 403: 123961. doi:  10.1016/j.jhazmat.2020.123961
[7] PRUDEN A, PEI R, STORTEBOOM H, et al. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado [J]. Environmental Science & Technology, 2006, 40(23): 7445 − 7450.
[8] MAO D, YU S, RYSZ M, et al. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants [J]. Water Research, 2015, 85: 458 − 466. doi:  10.1016/j.watres.2015.09.010
[9] LIU X, LU S, GUO W, et al. Antibiotics in the aquatic environments: a review of lakes, China [J]. Science of the Total Environment, 2018, 627: 1195 − 1208. doi:  10.1016/j.scitotenv.2018.01.271
[10] BUENO I, WSILLIANM-NGUYEN J, HWANG H, et al. Impact of point sources on antibiotic resistance genes in the natural environment: A systematic review of the evidence [J]. Animal Health Research Reviews, 2017, 18(2): 112 − 127. doi:  10.1017/S146625231700007X
[11] WANG G, ZHOU S, HAN X, et al. Occurrence, distribution, and source track of antibiotics and antibiotic resistance genes in the main rivers of Chongqing city, southwest China [J]. Journal of Hazardous Materials, 2020, 389: 122110. doi:  10.1016/j.jhazmat.2020.122110
[12] ZHANG Y, LU J, WU J, et al. Potential risks of microplastics combined with superbugs: Enrichment of antibiotic resistant bacteria on the surface of microplastics in mariculture system [J]. Ecotoxicology and Environmental Safety, 2020, 187: 109852. doi:  10.1016/j.ecoenv.2019.109852
[13] 赵美霞, 余克服, 张乔民. 珊瑚礁区的生物多样性及其生态功能[J]. 生态学报, 2006, 26(1): 186 − 194. doi:  10.3321/j.issn:1000-0933.2006.01.025
[14] 黄荣永, 余克服, 王英辉, 等. 珊瑚礁遥感研究进展[J]. 遥感学报, 2019, 23(6): 1091 − 1112.
[15] ZHANG R, ZHANG R, YU K, et al. Occurrence, sources and transport of antibiotics in the surface water of coral reef regions in the South China Sea: Potential risk to coral growth [J]. Environmental Pollution, 2018, 232: 450 − 457. doi:  10.1016/j.envpol.2017.09.064
[16] LIU S, SU H, PAN Y F, et al. Spatial and seasonal variations of antibiotics and antibiotic resistance genes and ecological risks in the coral reef regions adjacent to two typical islands in South China Sea [J]. Marine Pollution Bulletin, 2020, 158: 111424. doi:  10.1016/j.marpolbul.2020.111424
[17] SWEET M J, CROQUER A, BYTHELL J C. Dynamics of bacterial community development in the reef coral Acropora muricata following experimental antibiotic treatment [J]. Coral Reefs, 2011, 30(4): 1121. doi:  10.1007/s00338-011-0800-0
[18] 周国伟, 黄晖, 喻子牛, 等. 造礁石珊瑚与其共生藻(Symbiodinium)共生研究进展[J]. 生态学报, 2009, 29(8): 4397 − 4407.
[19] 吴钟解, 吴瑞, 王道儒, 等. 海南岛东、南部珊瑚礁生态健康状况初步分析[J]. 热带作物学报, 2011, 32(1): 122 − 130. doi:  10.3969/j.issn.1000-2561.2011.01.025
[20] 朱志雄, 马坤, 方彰胜, 等. 海南省麒麟菜自然保护区海草资源分布及保护建议[J]. 广东农业科学, 2017, 44(4): 90 − 98.
[21] 国家质量监督检验检疫总局. 国家标准化管理委员会. GB 17378.4—2007. 海洋监测规范第4部分: 海水分析 [s]. 北京: 中国标准出版社, 2007.
[22] 国家海洋局. HY/T 147.1-2013. 海洋监测技术规程第1部分: 海水 [s]. 北京: 国家海洋局, 2013.
[23] YUAN J, LI M, LIN S. An improved DNA extraction method for efficient and quantitative recovery of phytoplankton diversity in natural assemblages [J]. PLoS One, 2015, 10(7): e0133060. doi:  10.1371/journal.pone.0133060
[24] LU J, ZHANG Y, WU J, et al. Effects of microplastics on distribution of antibiotic resistance genes in recirculating aquaculture system [J]. Ecotoxicology and Environmental Safety, 2019, 184: 109631. doi:  10.1016/j.ecoenv.2019.109631
[25] 阮孙兰. 海南东寨港红树林典型区域抗生素抗性基因时空分布特征及影响因素研究 [D]. 海口: 海南大学, 2018.
[26] SU H, HU X, XU W, et al. Diversity, abundances and distribution of antibiotic resistance genes and virulence factors in the South China Sea revealed by metagenomic sequencing [J]. Science of The Total Environment, 2022, 814: 152803. doi:  10.1016/j.scitotenv.2021.152803
[27] 姜春霞, 黎平, 李森楠, 等. 海南东寨港海水和沉积物中抗生素抗性基因污染特征研究[J]. 生态环境学报, 2019, 28(1): 128 − 135.
[28] LI W, SU H, CAO Y, et al. Antibiotic resistance genes and bacterial community dynamics in the seawater environment of Dapeng Cove, South China [J]. Science of the Total Environment, 2020, 723: 138027. doi:  10.1016/j.scitotenv.2020.138027
[29] 王熙涛, 卢燕丹, 王丽丽, 等. 新型抗生素替代品防治水产动物细菌性疾病的研究进展[J]. 饲料与畜牧, 2015(4): 18 − 22.
[30] 吕可, 赵前程, 刘婧懿, 等. 噬菌体在水生动物病害防治中的应用问题和解决策略[J]. 水产科学, 2020, 39(6): 964 − 971.
[31] 苏建强, 黄福义, 朱永官. 环境抗生素抗性基因研究进展[J]. 生物多样性, 2013, 21(4): 481 − 487.
[32] ZHANG G, LU S, WANG Y, et al. Occurrence of antibiotics and antibiotic resistance genes and their correlations in lower Yangtze River, China [J]. Environmental Pollution, 2020, 257: 113365. doi:  10.1016/j.envpol.2019.113365
[33] SUZUKI S, OGO M, MILLER T W, et al. Who possesses drug resistance genes in the aquatic environment?: Sulfamethoxazole (SMX) resistance genes among the bacterial community in water environment of Metro-Manila, Philippines [J]. Frontiers in Microbiology, 2013, 4: 102.
[34] DANG C, XIA Y, ZHENG M, et al. Metagenomic insights into the profile of antibiotic resistomes in a large drinking water reservoir [J]. Environment International, 2020, 136: 105449. doi:  10.1016/j.envint.2019.105449
[35] LIU M, LI Q, SUN H, et al. Impact of salinity on antibiotic resistance genes in wastewater treatment bioreactors [J]. Chemical Engineering Journal, 2018, 338: 557 − 563. doi:  10.1016/j.cej.2018.01.066
[36] BERGERON S, BROWN R, HOMER J, et al. Presence of antibiotic resistance genes in different salinity gradients of freshwater to saltwater marshes in southeast Louisiana, USA [J]. International Biodeterioration & Biodegradation, 2016, 113: 80 − 87.
[37] SEILER C, BERENDONK T U. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture [J]. Frontiers in Microbiology, 2012, 3: 399.
[38] 张俊亚, 魏源送, 陈梅雪, 等. 畜禽粪便生物处理与土地利用全过程中抗生素和重金属抗性基因的赋存与转归特征研究进展[J]. 环境科学学报, 2015, 35(4): 935 − 946.
[39] HU H W, WANG J T, LI J, et al. Long-term nickel contamination increases the occurrence of antibiotic resistance genes in agricultural soils [J]. Environmental Science & Technology, 2017, 51(2): 790 − 800.
[40] HU H W, WANG J T, LI J, et al. Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils [J]. Environmental Microbiology, 2016, 18(11): 3896 − 3909. doi:  10.1111/1462-2920.13370
[41] WARDWELL L H, JUDE B A, MOODY J P, et al. Co-selection of mercury and antibiotic resistance in sphagnum core samples dating back 2000 years [J]. Geomicrobiology Journal, 2009, 26(5): 351 − 360. doi:  10.1080/01490450902889072