[1] ZHOU J M, CHAI J. Plant pathogenic bacterial type III effectors subdue host responses [J]. Current Opinion in Microbiology, 2008, 11: 179 − 185. doi:  10.1016/j.mib.2008.02.004
[2] SATO K, KADOTA Y, SHIRASU K. Plant immune responses to parasitic nematodes [J]. Front Plant Sci, 2019, 10: 1 − 14. doi:  10.3389/fpls.2019.00001
[3] JONES J D, DANGL J L. The plant immune system [J]. Nature, 2006, 444: 323 − 329. doi:  10.1038/nature05286
[4] WIERMER M, FEYS B J, PARKER J E. Plant immunity: the EDS1 regulatory node [J]. Current Opinion in Plant Biology, 2005, 8: 383 − 389. doi:  10.1016/j.pbi.2005.05.010
[5] VOSS M, TOELZER C, BHANDARI D D, et al. Arabidopsis immunity regulator EDS1 in a PAD4/SAG101-unbound form is a monomer with an inherently inactive conformation [J]. J. Struct Biol, 2019, 209: 1 − 10.
[6] RIETZ S, STAMM A, MALONEK S, et al. Different roles of enhanced disease susceptibility1(EDS1) bound to and dissociated from Phytoalexin Deficient 4(PAD4) in Arabidopsis immunity [J]. The New Phytologist, 2011, 191: 107 − 119. doi:  10.1111/j.1469-8137.2011.03675.x
[7] HEIDRICH K, WIRTHMUELLER L, TASSET C, et al. Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses [J]. Science, 2011, 334: 1401 − 1404. doi:  10.1126/science.1211641
[8] WAGNER S, STUTTMANN J, RIETZ S, et al. Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity [J]. Cell host & microbe, 2013, 14: 619 − 630.
[9] FEYS B J, WIERMER M, BHAT R A, et al. Arabidopsis Senescence-associated Gene 101 stabilizes and signals within an Enhanced Disease Susceptibility 1 complex in plant innate immunity [J]. The Plant cell, 2005, 17: 2601 − 2613. doi:  10.1105/tpc.105.033910
[10] ZHU S, JEONG R D, VENUGOPAL S C, et al. SAG101 forms a ternary complex with EDS1 and PAD4 and is required for resistance signaling against turnip crinkle virus [J]. PLoS Pathogens, 2011, 7: e1002318. doi:  10.1371/journal.ppat.1002318
[11] MEI S, HOU S, CUI H, et al. Characterization of the interaction between Oidium heveae and Arabidopsis thaliana [J]. Molecular Plant Pathology, 2016, 17(9): 1331 − 1343. doi:  10.1111/mpp.12363
[12] CHRISTIAN D, KEMAL K, IAIN W W, et al. The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis [J]. Plant Journal, 2005, 43: 745 − 757. doi:  10.1111/j.1365-313X.2005.02488.x
[13] AARTS N, METZ M, HOLUB E, et al. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis [J]. Proc. Natl. Acad. Sci. USA, 1998, 95(10): 306 − 311.
[14] HAO P, ZHAO J F, MICHAEL M N. ATAF2 integrates Arabidopsis brassinosteroid inactivation and seedling photomorphogenesis [J]. Development, 2015, 142: 4129 − 4138. doi:  10.1242/dev.124347
[15] PENG H, NEFF M M. Circadian Clock Associated 1 and ATAF2 differentially suppress cytochrome P450-mediated brassinosteroid inactivation [J]. J Exp Bot., 2019, 10(23): 1 − 43.