[1] CAI Z, LI G, LIN C, et al. Identifying pathogenicity genes in the rubber tree anthracnose fungus Colletotrichum gloeosporioides through random insertional mutagenesis [J]. Microbiological Research, 2013, 168(6): 340 − 350. doi:  10.1016/j.micres.2013.01.005
[2] LIEBEREI R. South American leaf blight of the rubber tree (Hevea spp.): New steps in plant domestication using physiological features and molecular markers [J]. Annals of Botany, 2007, 100(6): 1125 − 1142. doi:  10.1093/aob/mcm133
[3] LIU X, LI B, CAI J, et al. Colletotrichum species causing anthracnose of rubber trees in China [J]. Scientific Reports, 2018, 8(1): 10435 − 10449. doi:  10.1038/s41598-018-28166-7
[4] THAMBUGALA T A D P and DESHAPPRIYA N. The role of Colletotrichum species on the Colletotrichum leaf disease of Hevea brasiliensis - a preliminary study [J]. Journal of the National Science Foundation of Sri Lanka, 2009, 37(2): 135 − 138. doi:  10.4038/jnsfsr.v37i2.1070
[5] GUYOT J, OMANDA E N, NDOUTOUME A, et al. Effect of controlling Colletotrichum leaf fall of rubber tree on epidemic development and rubber production [J]. Crop Protection, 2001, 20(7): 581 − 590. doi:  10.1016/S0261-2194(01)00027-8
[6] DAUCH A L, AHN B and WATSON A K. Molecular monitoring of wild-type and genetically engineered Colletotrichum coccodes biocontrol strains in planta [J]. Plant Disease, 2006, 90(12): 1504 − 1510. doi:  10.1094/PD-90-1504
[7] WHARTON P S, DIÉGUEZ-URIBEONDO J. The biology of Colletotrichum acutatum [J]. Anales del Jardín Botánico de Madrid, 2004, 61(1): 3 − 22.
[8] PEI M H, RUIZ C, HARRIS J, et al. Quantitative inoculations of poplars with Melampsora larici-populina [J]. European Journal of Plant Pathology, 2003, 109(3): 269 − 276. doi:  10.1023/A:1022822503139
[9] SCHMITZ O, DANNEBERG G, HUNDESHAGEN B, et al. Quantification of vesicular-arbuscular mycorrhiza by biochemical parameters [J]. Journal of Plant Physiology, 1991, 139(1): 106 − 114. doi:  10.1016/S0176-1617(11)80174-4
[10] SHANKAL M, GREGORY A, KALKHOVEN M J, et al. A competitive ELISA for detecting resistance to latent stem infection by Diaporthe toxica in narrow-leafed lupins [J]. Australasian Plant Pathology, 1998, 27(4): 251 − 258. doi:  10.1071/AP98028
[11] GABLER J, KAČERGIUS A AND JOVAIŠIENĖ Z. Detection of Phomopsis vaccinii on blueberry and cranberry in Europe by direct tissue blot immunoassay and plate-trapped antigen ELISA [J]. Journal of Phytopathology, 2004, 152(11): 630 − 632.
[12] BRILL L M. Analysis of two ELISA formats and antigen preparations using polyclonal antibodies against Phomopsis longicolla [J]. Phytopathology, 1994, 84(2): 1047 − 1056.
[13] LOMMEL S A, MCCAIN A H AND MORRIS T J. Evaluation of indirect enzyme-linked immunosorbent assay for the detection of plant viruses [J]. Phytopathology, 1982, 72(8): 1018 − 1022. doi:  10.1094/Phyto-72-1018
[14] LISTER R M AND ROCHOW W F. Detection of barley yellow dwarf virus by enzyme-linked immunosorbent assay [J]. Phytopathology, 1979, 69(6): 649 − 654. doi:  10.1094/Phyto-69-649
[15] HANSE B, RAAIJMAKERS E E M, SCHOONE A H L, et al. Stemphylium spp., the cause of yellow leaf spot disease in sugar beet (Beta vulgaris L.) in the Netherlands [J]. European Journal of Plant Pathology, 2015, 142(2): 319 − 330. doi:  10.1007/s10658-015-0617-8
[16] SAKAMOTO S, PUTALUN W, VIMOLMANGKANG S, et al. Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites [J]. Journal of Natural Medicines, 2017, 72(2): 32 − 42.
[17] KITISRIPANYA T, KRITTANAI S, UDOMSIN O, et al. Development of an enzyme-linked immunosorbent assay for determination of miroestrol using an anti-miroestrol monoclonal antibody [J]. Planta Medica, 2017, 83(10): 855 − 861. doi:  10.1055/s-0043-102689
[18] GREEN H AND JENSEN D F A. Tool for monitoring Trichoderma hanianum: Ⅱ. The use of a GUS transformant for ecological studies in the rhizosphere [J]. Phytopalhology, 1995, 85: 1436 − 1440. doi:  10.1094/Phyto-85-1436
[19] FREEMAN S, MAIMON M AND PINKAS Y. Use of GUS transformants of Fusarium subglutinans for determining etiology of mango malformation disease [J]. Phytopathology, 1999, 89(6): 456 − 461. doi:  10.1094/PHYTO.1999.89.6.456
[20] CHALFIE M T Y, EUSKIRCHEN G, WARD W W, et al. Green fluorescent protein as marker for gene expression [J]. Science, 1994, 263(11): 802 − 805.
[21] OLIVAIN C, HUMBERT C, NAHALKOVA J, et al. Colonization of tomato root by pathogenic and nonpathogenic Fusarium oxysporum strains inoculated together and separately into the soil [J]. Applied and Environmental Microbiology, 2006, 72(2): 1523 − 1531. doi:  10.1128/AEM.72.2.1523-1531.2006
[22] CHEN N, HSIANG T AND GOODWIN P H. Use of green fluorescent protein to quantify the growth of Colletotrichum during infection of tobacco [J]. Journal of Microbiological Methods, 2003, 53(1): 113 − 122. doi:  10.1016/S0167-7012(02)00234-8
[23] SIGAL H, STANLEY F AND AMIR S. Use of green fluorescent protein-transgenic strains to study pathogenic and nonpathogenic lifestyles in Colletotrichum acutatum [J]. Phytopathology, 2002, 92(7): 743 − 749. doi:  10.1094/PHYTO.2002.92.7.743
[24] PARIKKA P AND LEMMETTY A. Tracing latent infection of Colletotrichum acutatum on strawberry by PCR [J]. European Journal of Plant Pathology, 2004, 110(4): 393 − 398. doi:  10.1023/B:EJPP.0000021073.67137.d2
[25] PARAN I AND MICHELMORE R W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce [J]. Theoretical and Applied Genetics, 1993, 85(8): 985 − 993. doi:  10.1007/BF00215038
[26] MERLIER D D, CHANDELIER A, DEBRUXELLES N, et al. Characterization of Alder Phytophthora isolates from Wallonia and development of SCAR primers for their specific detection [J]. Journal of Phytopathology, 2005, 153(2): 99 − 107. doi:  10.1111/j.1439-0434.2005.00936.x
[27] SPADARO D, PELLEGRINO C, GARIBALDI A, et al. Development of SCAR primers for the detection of Cadophora luteo-olivacea on kiwifruit and pome fruit and of Cadophora malorum on pome fruit [J]. Phytopathologia Mediterranea, 2011, 50(3): 430 − 441.
[28] NITHYA K, BUKHARI K A I M, VALLUVAPARIDASAN V, et al. Molecular detection of Colletotrichum falcatum causing red rot disease of sugarcane (Saccharum officinarum) using a SCAR marker [J]. Annals of Applied Biology, 2012, 160(2): 168 − 173. doi:  10.1111/j.1744-7348.2011.00529.x
[29] PÉREZ-HERNÁNDEZ O, NAM M H, GLEASON M L, et al. Development of a nested polymerase chain reaction assay for detection of Colletotrichum acutatum on symptomless strawberry leaves [J]. Plant Disease, 2008, 92(12): 1655 − 1661. doi:  10.1094/PDIS-92-12-1655
[30] 张磊, 常有宏, 刘邮洲, 等. 梨轮纹病和炭疽病病原菌PCR检测[J]. 江苏农业学报, 2012, 28(2): 415 − 420. doi:  10.3969/j.issn.1000-4440.2012.02.032
[31] CHEN Y Y, CONNER R L, GILLARD C L, et al. A specific and sensitive method for the detection of Colletotrichum lindemuthianum in dry bean tissue [J]. Plant Disease, 2007, 91(10): 1271 − 1276. doi:  10.1094/PDIS-91-10-1271
[32] TOMITA N, MORI Y, KANDA H, et al. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products [J]. Nature Protocols, 2008, 3(5): 877 − 882. doi:  10.1038/nprot.2008.57
[33] KHAN M, LI B, JIANG Y, et al. Evaluation of different PCR-based assays and LAMP method for rapid detection of Phytophthora infestans by targeting the Ypt1 gene [J]. Frontiers in Microbiology, 2017, 8: 1920 − 1931. doi:  10.3389/fmicb.2017.01920
[34] SI AMMOUR M, BILODEAU G J, TREMBLAY D M, et al. Development of real-time isothermal amplification assays for on-site detection of Phytophthora infestans in potato leaves [J]. Plant Disease, 2017, 101(7): 1269 − 1277. doi:  10.1094/PDIS-12-16-1780-RE
[35] TIAN Q, LU C, WANG S, et al. Rapid diagnosis of soybean anthracnose caused by Colletotrichum truncatum using a loop-mediated isothermal amplification (LAMP) assay [J]. European Journal of Plant Pathology, 2016, 148(4): 785 − 793.
[36] KHAN M, WANG R, LI B, et al. Comparative evaluation of the LAMP assay and PCR-based assays for the rapid detection of Alternaria solani [J]. Front Microbiol, 2018, 9: 2089 − 2100. doi:  10.3389/fmicb.2018.02089
[37] DEBODE J, VAN HEMELRIJCK W, BAEYEN S, et al. Quantitative detection and monitoring of Colletotrichum acutatum in strawberry leaves using real-time PCR [J]. Plant Pathology, 2009, 58(3): 504 − 514. doi:  10.1111/j.1365-3059.2008.01987.x
[38] CHEN Y Y, CONNER R L, GILLARD C L, et al. A quantitative real-time PCR assay for detection of Colletotrichum lindemuthianumin navy bean seeds [J]. Plant Pathology, 2013, 62(4): 900 − 907. doi:  10.1111/j.1365-3059.2012.02692.x
[39] SRINIVASAN M, KOTHANDARAMAN S V, VAIKUNTAVASAN P, et al. Development of conventional and real-time PCR protocols for specific and sensitive detection of Colletotrichum capsici in chilli (Capsicum annuum L) [J]. Phytoparasitica, 2014, 42(4): 437 − 444. doi:  10.1007/s12600-013-0380-3
[40] OO M M, LIM G, JANG H A, et al. Characterization and pathogenicity of new record of anthracnose on various chili varieties caused by Colletotrichum scovillei in Korea [J]. Mycobiology, 2017, 45(3): 184 − 191. doi:  10.5941/MYCO.2017.45.3.184
[41] DIAO Y Z, ZHANG C, LIU F, et al. Colletotrichum species causing anthracnose disease of chili in China [J]. Persoonia Molecular Phylogeny & Evolution of Fungi, 2017, 38: 20 − 37.
[42] WANG Y C, HAO X Y, WANG L, et al. Diverse Colletotrichum species cause anthracnose of tea plants (Camellia sinensis (L) O Kuntze) in China [J]. Scientific Reports, 2016, 6: 35287 − 35300. doi:  10.1038/srep35287
[43] HYDE K D. Colletotrichum: a catalogue of confusion [J]. Fungal Diversity, 2009, 39: 1 − 17.
[44] NIU X, GAO H, QI J, et al. Colletotrichum species associated with jute (Corchorus capsularis L) anthracnose in southeastern China [J]. Scientific Reports, 2016, 6: 25179 − 25188. doi:  10.1038/srep25179
[45] MARTINEZ-CULEBRAS P V, BARRIO E, GARCIA M D, et al. Identification of Colletotrichum species responsible for anthracnose of strawberry based on the internal transcribed spacers of the ribosomal region [J]. FEMS Microbiol Lett, 2000, 189(1): 97 − 101. doi:  10.1111/j.1574-6968.2000.tb09213.x
[46] SCHOCH C L, SEIFERT K A, HUHNDORF S, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 6241 − 6246. doi:  10.1073/pnas.1117018109
[47] SREENIVASAPRASAD S, TALHINHAS P. Genotypic and phenotypic diversity in Colletotrichum acutatum, a cosmopolitan pathogen causing anthracnose on a wide range of hosts [J]. Molecular Plant Pathology, 2005, 6(4): 361 − 378. doi:  10.1111/j.1364-3703.2005.00291.x
[48] ZHU Z X, ZHENG L, HSIANG T, et al. Detection and quantification of Fusarium communein host tissue and infected soil using real-time PCR [J]. Plant Pathology, 2016, 65: 218 − 226. doi:  10.1111/ppa.12412
[49] ZHANG X, HARRINGTON T C, BATZER J C, et al. Detection of Colletotrichum acutatum sensu lato on strawberry by loop-mediated isothermal amplification [J]. Plant Disease, 2016, 100(9): 1804 − 1812. doi:  10.1094/PDIS-09-15-1013-RE
[50] SCARLETT K, TESORIERO L, DANIEL R, et al. Detection and quantification of Fusarium oxysporum f sp cucumerinum in environmental samples using a specific quantitative PCR assay [J]. European Journal of Plant Pathology, 2013, 137(2): 315 − 324. doi:  10.1007/s10658-013-0244-1
[51] NATH V S, HEGDE V M, JEEVA M L, et al. Rapid and sensitive detection of Phytophthora colocasiae responsible for the taro leaf blight using conventional and real-time PCR assay [J]. FEMS Microbiol Lett, 2014, 352(2): 174 − 183. doi:  10.1111/1574-6968.12395
[52] JIMÉNEZ-FERNÁNDEZ D, MONTES-BORREGO M, NAVAS-CORTÉS J A, et al. Identification and quantification of Fusarium oxysporum in planta and soil by means of an improved specific and quantitative PCR assay [J]. Applied Soil Ecology, 2010, 46(3): 372 − 382. doi:  10.1016/j.apsoil.2010.10.001
[53] YANG H C, HAUDENSHIELD J S AND HARTMAN G L. Multiplex real-time PCR detection and differentiation of Colletotrichum species infecting soybean [J]. Plant Disease, 2015, 99(11): 1559 − 1568. doi:  10.1094/PDIS-11-14-1189-RE
[54] LIU L, YAN Y, HUANG J, et al. A novel MFS transporter gene ChMfs1 is important for hyphal morphology, conidiation, and pathogenicity in Colletotrichum higginsianum [J]. Frontiers in Microbiology, 2017, 8: 1953 − 1964. doi:  10.3389/fmicb.2017.01953
[55] LIU F, TANG G, ZHENG X, et al. Molecular and phenotypic characterization of Colletotrichum species associated with anthracnose disease in peppers from Sichuan province, China [J]. Scientific Reports, 2016, 6: 32761 − 32778. doi:  10.1038/srep32761
[56] PHOTITA W, LUM S, MCKENZIE E H C, et al. Are some endophytes of Musa acuminata latent pathogens? [J]. Fungal Diversity, 2004, 16: 131 − 140.
[57] BARCELOS Q L, PINTO J M, VAILLANCOURT L J, et al. Characterization of Glomerella strains recovered from anthracnose lesions on common bean plants in Brazil [J]. PLoS One, 2014, 9(3): e90910. doi:  10.1371/journal.pone.0090910
[58] WANG F, QIN G, SUI Z, et al. Improved method for assaying maize plant resistance to maize rough dwarf disease by artificial inoculation and real-time RT-PCR [J]. European Journal of Plant Pathology, 2006, 116(4): 289 − 300. doi:  10.1007/s10658-006-9060-1
[59] HOSSAIN M M, SULTANA F, MIYAZAWA M, et al. Plant growth-promoting fungus Penicillium spp. GP15-1 enhances growth and confers protection against damping-off and anthracnose in the cucumber [J]. Journal of Oleo Science, 2014, 63(4): 391 − 400. doi:  10.5650/jos.ess13143
[60] JIMÉNEZ-FERNÁNDEZ D, MONTES-BORREGO M, JIMÉNEZ-DÍAZ R M. In planta and soil quantification of Fusarium oxysporum f sp ciceris and evaluation of Fusarium wilt resistance in chickpea with a newly developed quantitative polymerase chain reaction assay [J]. Phytopathology, 2011, 101: 250 − 262. doi:  10.1094/PHYTO-07-10-0190
[61] KOOMEN I, JEFFRIES P. Effects of antagonistic microorganisms on the postharvest development of Colletotrichum gloeosporioides on mango [J]. Plant Pathology, 1993, 42(2): 230 − 237. doi:  10.1111/j.1365-3059.1993.tb01495.x
[62] LEANDRO L F, GLEASON M L, NUTTER F W, et al. Influence of temperature and wetness duration on conidia and appressoria of Colletotrichum acutatum on symptomless strawberry leaves [J]. Phytopathology, 2003, 93(4): 513 − 520. doi:  10.1094/PHYTO.2003.93.4.513
[63] LEANDRO L F S, GLEASON M L, WEGULO S N, et al. Germination and sporulation of Colletotrichum acutatum on symptomless strawberry leaves [J]. Phytopathology, 2001, 91(7): 659 − 664. doi:  10.1094/PHYTO.2001.91.7.659
[64] HYRE R A. Progress in forecasting late blight of potato and tomato [J]. Plant Disease, 1954, 38: 245 − 253.
[65] WALLIN J R. Forecasting tomato and potato late blight in north-central region (Abs) [J]. Phytopathology, 1951, 47: 37 − 38.
[66] 杨信东, 李葵花, 高洁, 等. 烟草野火病“天气促病指数”表解模型的建立[J]. 吉林农业大学学报, 2002, 2(2): 154 − 157.
[67] FURUTA K, NAGASHIMA S, INUKAI T, et al. Construction of a system for the strawberry nursery production towards elimination of latent infection of anthracnose fungi by a combination of PCR and microtube hybridization [J]. The Plant Pathology Journal, 2017, 33(1): 80 − 86. doi:  10.5423/PPJ.NT.05.2016.0132
[68] ELIAS L M, FORTKAMP D, SARTORI S B, et al. The potential of compounds isolated from Xylaria spp. as antifungal agents against anthracnose [J]. Biotechnology and Industrial Microbiology, 2018, 49(4): 840 − 847.
[69] QIN B, ZHENG F AND ZHANG Y. Molecular cloning and characterization of a Mlo gene in rubber tree (Hevea brasiliensis) [J]. Journal of Plant Physiology, 2015, 175: 78 − 85. doi:  10.1016/j.jplph.2014.10.019
[70] 范会雄, 李德威, 黄宏积, 等. 橡胶树炭疽病发生流行规律及防治研究[J]. 植物保护, 1996, 22(5): 31 − 32.