[1] |
DEBLONDE G, PENNER M, ROYER A. Measuring leaf area index with the Li-cor LAI-2000 in pine stands[J]. Ecology, 1994, 75(5): 1507 − 1511. doi: 10.2307/1937474 |
[2] |
LANE D R, COFFIN D P, LAUENROTH W K. Changes in grassland canopy structure across a precipitation gradient[J]. Journal of Vegetation Science, 2000, 11(3): 359 − 368. doi: 10.2307/3236628 |
[3] |
WATSON D J. Comparative physiological studies on the growth of field crops: I. variation in net assimilation rate and leaf area between species and varieties, and within and between years[J]. Annals of Botany, 1947, 11(1): 41 − 76. doi: 10.1093/oxfordjournals.aob.a083148 |
[4] |
CHEN J M, CIHLAR J. Retrieving leaf area index of boreal conifer forests using Landsat TM images[J]. Remote Sensing of Environment, 1996, 55(2): 153 − 162. doi: 10.1016/0034-4257(95)00195-6 |
[5] |
CHAPIN F S III, SALA O E, BURKE I C, et al. Ecosystem consequences of changing biodiversity[J]. BioScience, 1998, 48(1): 45 − 52. doi: 10.2307/1313227 |
[6] |
GUO X, ZHANG C, WILMSHURST J, et al. Monitoring grassland health with remote sensing approaches[J]. Prairie Perspectives, 2005, 8: 11 − 22. |
[7] |
BLACK S C. Estimation of grass photosynthesis rates in mixed-grass prairie using field and remote sensing approaches [D], Saskatoon: University of Saskatchewan, 2006. |
[8] |
ZHANG C, GUO X, WILMSHURST J, et al. Application of RADARSAT imagery to grassland biophysical heterogeneity assessment[J]. Canadian Journal of Remote Sensing, 2006, 32(4): 281 − 287. doi: 10.5589/m06-025 |
[9] |
COLOMINA I, MOLINA P. Unmanned aerial systems for photogrammetry and remote sensing: a review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 92: 79 − 97. doi: 10.1016/j.isprsjprs.2014.02.013 |
[10] |
BUNNIK N J J The multispectral reflectance of shortwave radiation by agricultural crops in relation with their morphological and optical properties. 1978. |
[11] |
唐芳林, 周红斌, 朱丽艳, 等. 构建林草融合的草原调查监测体系[J]. 林业建设, 2020(5): 11 − 16. |
[12] |
LI S, DING X, KUANG Q, et al. Potential of UAV-based active sensing for monitoring rice leaf nitrogen status[J]. Frontiers in Plant Science, 2018, 9: 1834.??. doi: 10.3389/fpls.2018.01834 |
[13] |
UNDERSANDER D, ALBERT B, COSGROVE D, et al. Pastures for profit: A guide to rotational grazing [M]. Madison: Cooperative Extensiton Publications, University of Wisconsin-Extension, 2002. |
[14] |
韩国栋, 卫智军, 许志信. 短花针茅草原划区轮牧试验研究[J]. 内蒙古农业大学学报(自然科学版), 2001, 22(1): 60 − 67. |
[15] |
马骏骥, 李钢铁, 刘慧, 等. 放牧方式对浑善达克沙地东缘草地植被特征影响[J]. 内蒙古林业科技, 2016, 42(2): 30 − 34. |
[16] |
许志信, 赵萌莉. 过度放牧对草原土壤侵蚀的影响[J]. 中国草地, 2001, 23(6): 60 − 64. |
[17] |
TEAGUE W R, DOWHOWER S L. Patch dynamics under rotational and continuous grazing management in large, heterogeneous paddocks[J]. Journal of Arid Environments, 2003, 53(2): 211 − 229. doi: 10.1006/jare.2002.1036 |
[18] |
SANJARI G, GHADIRI H, CIESIOLKA C A A, et al. Comparing the effects of continuous and time-controlled grazing systems on soil characteristics in Southeast Queensland[J]. Soil Research, 2008, 46(4): 348 − 358. doi: 10.1071/SR07220 |
[19] |
彭祺, 王宁. 不同放牧制度对草地植被的影响[J]. 农业科学研究, 2005, 26(1): 27 − 30. |
[20] |
张铜会, 赵哈林, 大黑俊哉, 等. 连续放牧对沙质草地植被盖度、土壤性质及其空间分布的影响[J]. 干旱区资源与环境, 2003, 17(4): 117 − 121. |
[21] |
SEMIADI G, MUIR P D, BARRY T N, et al. Grazing patterns of sambar Deer (Cervus unicolor) and red Deer (Cervus elaphus) in captivity[J]. New Zealand Journal of Agricultural Research, 1993, 36(2): 253 − 260. doi: 10.1080/00288233.1993.10417761 |
[22] |
罗红霞, 戴声佩, 刘恩平, 等. 2001—2014年海南岛植被覆盖时空变化特征[J]. 水土保持研究, 2018, 25(5): 343 − 350. |
[23] |
COSTA C M, DIFANTE G S, COSTA A B G, et al. Grazing intensity as a management strategy in tropical grasses for beef cattle production: a meta-analysis[J]. Animal, 2021, 15(4): 100192. doi: 10.1016/j.animal.2021.100192 |
[24] |
HASSAN M A, YANG M, RASHEED A, et al. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform[J]. Plant Science, 2019, 282: 95 − 103. doi: 10.1016/j.plantsci.2018.10.022 |
[25] |
QI J, CHEHBOUNI A, HUETE A R, et al. A modified soil adjusted vegetation index[J]. Remote Sensing of Environment, 1994, 48(2): 119 − 126. doi: 10.1016/0034-4257(94)90134-1 |
[26] |
SHAFIAN S, RAJAN N, SCHNELL R, et al. Unmanned aerial systems-based remote sensing for monitoring sorghum growth and development[J]. PLoS One, 2018, 13(5): e0196605. doi: 10.1371/journal.pone.0196605 |
[27] |
HAO L, PAN C, LIU P, et al. Detection of the coupling between vegetation leaf area and climate in a multifunctional watershed, northwestern China[J]. Remote Sensing, 2016, 8(12): 1032 − 1055. doi: 10.3390/rs8121032 |
[28] |
LIU P, HAO L, PAN C, et al. Combined effects of climate and land management on watershed vegetation dynamics in an arid environment[J]. Science of the Total Environment, 2017, 589: 73 − 88. doi: 10.1016/j.scitotenv.2017.02.210 |
[29] |
BARANOVA A, SCHICKHOFF U, WANG S, et al. Mountain pastures of Qilian Shan: plant communities, grazing impact and degradation status (Gansu Province, NW China)[J]. Hacquetia, 2016, 15(2): 21 − 35. doi: 10.1515/hacq-2016-0014 |
[30] |
HAO L, PAN C, FANG D, et al. Quantifying the effects of overgrazing on mountainous watershed vegetation dynamics under a changing climate[J]. Science of the Total Environment, 2018, 639: 1408 − 1420. doi: 10.1016/j.scitotenv.2018.05.224 |
[31] |
LIANG Y, HAN G, ZHOU H, et al. Grazing intensity on vegetation dynamics of a typical steppe in northeast inner Mongolia[J]. Rangeland Ecology & Management, 2009, 62(4): 328 − 336. |
[32] |
ZHAO L P, SU J S, WU G L, et al. Long-term effects of grazing exclusion on aboveground and belowground plant species diversity in a steppe of the Loess Plateau, China[J]. Plant Ecology and Evolution, 2011, 144(3): 313 − 320. doi: 10.5091/plecevo.2011.617 |
[33] |
DENG L, SWEENEY S, SHANGGUAN Z P. Grassland responses to grazing disturbance: plant diversity changes with grazing intensity in a desert steppe[J]. Grass and Forage Science, 2014, 69(3): 524 − 533. doi: 10.1111/gfs.12065 |
[34] |
苏爱玲, 张振华, 汪诗平, 等. 不同季节放牧对矮嵩草草甸植物叶面积指数的影响[J]. 草原与草坪, 2010, 30(1): 50 − 55. |
[35] |
BARON V S, MAPFUMO E, DICK A C, et al. Grazing intensity impacts on pasture carbon and nitrogen flow[J]. Journal of Range Management, 2002, 55(6): 535 − 541. doi: 10.2307/4003996 |
[36] |
DA TRINDADE J K, DA SILVA S C, DE SOUZA S J JR, et al. Composição morfológica da forragem consumida por bovinos de corte durante o rebaixamento do capim-marandu submetido a estratégias de pastejo rotativo[J]. Pesquisa Agropecuária Brasileira, 2007, 42(6): 883 − 890. |
[37] |
DA SILVA S C, PEREIRA L E T, SBRISSIA A F, et al. Carbon and nitrogen reserves in marandu palisade grass subjected to intensities of continuous stocking management[J]. The Journal of Agricultural Science, 2015, 153(8): 1449 − 1463. doi: 10.1017/S0021859614001130 |
[38] |
SBRISSIA A F, DA SILVA S C, SARMENTO D O L, et al. Tillering dynamics in palisadegrass swards continuously stocked by cattle[J]. Plant Ecology, 2010, 206(2): 349 − 359. doi: 10.1007/s11258-009-9647-7 |
[39] |
LIN X, ZHANG Z, WANG S, et al. Response of ecosystem respiration to warming and grazing during the growing seasons in the alpine meadow on the Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2011, 151(7): 792 − 802. doi: 10.1016/j.agrformet.2011.01.009 |
[40] |
DENG L, ZHANG Z, SHANGGUAN Z. Long-term fencing effects on plant diversity and soil properties in China[J]. Soil and Tillage Research, 2014, 137: 7 − 15. doi: 10.1016/j.still.2013.11.002 |
[41] |
SUMANTA B, RITCHIE MARK E. Introduced grazers can restrict potential soil carbon sequestration through impacts on plant community composition[J]. Ecology Letters, 2010, 13(8): 959 − 68. doi: 10.1111/j.1461-0248.2010.01486.x |
[42] |
BAI W, FANG Y, ZHOU M, et al. Heavily intensified grazing reduces root production in an Inner Mongolia temperate steppe[J]. Agriculture, Ecosystems & Environment, 2015, 200: 143 − 150. |
[43] |
FATICHI S, ZEEMAN M J, FUHRER J, et al. Ecohydrological effects of management on subalpine grasslands: from local to catchment scale[J]. Water Resources Research, 2014, 50(1): 148 − 164. doi: 10.1002/2013WR014535 |
[44] |
KAIRIS O, KARAVITIS C, SALVATI L, et al. Exploring the impact of overgrazing on soil erosion and land degradation in a dry Mediterranean agro-forest landscape (crete, Greece)[J]. Arid Land Research and Management, 2015, 29(3): 360 − 374. doi: 10.1080/15324982.2014.968691 |
[45] |
PEREYRA D A, BUCCI S J, ARIAS N S, et al. Grazing increases evapotranspiration without the cost of lowering soil water storages in arid ecosystems[J]. Ecohydrology, 2017, 10(6): e1850. doi: 10.1002/eco.1850 |
[46] |
STEINFELD H, WASSENAAR T. The role of livestock production in carbon and nitrogen cycles[J]. Annual Review of Environment and Resources, 2007, 32: 271 − 294. doi: 10.1146/annurev.energy.32.041806.143508 |
[47] |
SUN L, YANG L, HAO L, et al. Hydrological effects of vegetation cover degradation and environmental implications in a semiarid temperate steppe, China[J]. Sustainability, 2017, 9(2): 281 − 301. doi: 10.3390/su9020281 |
[48] |
GAO J. Analysis and assessment of the risk of snow and freezing disaster in China[J]. International Journal of Disaster Risk Reduction, 2016, 19: 334 − 340. doi: 10.1016/j.ijdrr.2016.09.007 |