[1] |
LIN Z J D, TAYLOR N J, BART R. Engineering disease-resistant cassava[J]. Cold Spring Harbor Perspectives in Biology, 2019, 11(11): a034595. doi: 10.1101/cshperspect.a034595 |
[2] |
ZÁRATE-CHAVES C A, DE LA CRUZ D G, VERDIER V, et al. Cassava diseases caused by Xanthomonas phaseoli pv. manihotis and Xanthomonas cassavae[J]. Molecular Plant Pathology, 2021, 22(12): 1520 − 1537. doi: 10.1111/mpp.13094 |
[3] |
时涛, 李超萍, 王国芬, 等. 中国木薯病害研究进展与展望[J]. 热带作物学报, 2023, 44(12): 2355 − 2368. doi: 10.3969/j.issn.1000-2561.2023.12.001 |
[4] |
YOODEE S, KOBAYASHI Y, SONGNUAN W, et al. Phytohormone priming elevates the accumulation of defense-related gene transcripts and enhances bacterial blight disease resistance in cassava[J]. Plant Physiology and Biochemistry, 2018, 122: 65 − 77. doi: 10.1016/j.plaphy.2017.11.016 |
[5] |
崔亚宁, 钱虹萍, 赵艳霞, 等. 模式识别受体的胞内转运及其在植物免疫中的作用[J]. 植物学报, 2020, 55(3): 329 − 339. doi: 10.11983/CBB19139 |
[6] |
CHANG M, CHEN H, LIU F Q, et al. PTI and ETI: convergent pathways with diverse elicitors[J]. Trends in Plant Science, 2022, 27(2): 113 − 115. doi: 10.1016/j.tplants.2021.11.013 |
[7] |
HERMANS D, VAN BEERS L, BROUX B. Nectin family ligands trigger immune effector functions in health and autoimmunity[J]. Biology, 2023, 12(3): 452. doi: 10.3390/biology12030452 |
[8] |
WANG D, YUAN M H, ZHUANG Y M, et al. DGK5-mediated phosphatidic acid homeostasis interplays with reactive oxygen species in plant immune signaling[J]. Journal of Integrative Plant Biology, 2024, 66(7): 1263 − 1265. doi: 10.1111/jipb.13683 |
[9] |
YU X Q, NIU H Q, LIU C, et al. PTI-ETI synergistic signal mechanisms in plant immunity[J]. Plant Biotechnology Journal, 2024, 22(8): 2113 − 2128. doi: 10.1111/pbi.14332 |
[10] |
FENG B M, MA S S, CHEN S X, et al. PARylation of the forkhead-associated domain protein DAWDLE regulates plant immunity[J]. EMBO Reports, 2016, 17(12): 1799 − 1813. doi: 10.15252/embr.201642486 |
[11] |
BIGEARD J, COLCOMBET J, HIRT H. Signaling mechanisms in pattern-triggered immunity (PTI)[J]. Molecular Plant, 2015, 8(4): 521 − 539. doi: 10.1016/j.molp.2014.12.022 |
[12] |
ZHANG S X, DOU Y C, LI S J, et al. DAWDLE interacts with DICER-LIKE proteins to mediate small RNA biogenesis[J]. Plant Physiology, 2018, 177(3): 1142 − 1151. doi: 10.1104/pp.18.00354 |
[13] |
TIAN X, SONG L P, WANG Y, et al. miR394 Acts as a negative regulator of Arabidopsis resistance to B. cinerea infection by targeting LCR[J]. Frontiers in Plant Science, 2018, 9: 903. doi: 10.3389/fpls.2018.00903 |
[14] |
MORRIS E R, CHEVALIER D, WALKER J C. DAWDLE, a forkhead-associated domain gene, regulates multiple aspects of plant development[J]. Plant Physiology, 2006, 141(3): 932 − 941. doi: 10.1104/pp.106.076893 |
[15] |
XIONG F, REN J J, WANG Y Y, et al. An Arabidopsis retention and splicing complex regulates root and embryo development through pre-mRNA splicing[J]. Plant Physiology, 2022, 190(1): 621 − 639. doi: 10.1093/plphys/kiac256 |
[16] |
PARK S J, CHOI S W, KIM G M, et al. Light-stabilized FHA2 suppresses miRNA biogenesis through interactions with DCL1 and HYL1[J]. Molecular Plant, 2021, 14(4): 647 − 663. doi: 10.1016/j.molp.2021.01.020 |
[17] |
BROOKS III L, HEIMSATH E G, JR, LORING G L, et al. FHA-RING ubiquitin ligases in cell division cycle control[J]. Cellular and Molecular Life Sciences, 2008, 65(21): 3458 − 3466. doi: 10.1007/s00018-008-8220-1 |
[18] |
WANG Q L. The role of forkhead-associated (FHA)-domain proteins in plant biology[J]. Plant Molecular Biology, 2023, 111(6): 455 − 472. doi: 10.1007/s11103-023-01338-4 |
[19] |
昌燕李, 韦运谢. 木薯MeCAMTA基因的克隆与原核表达[J]. 分子植物育种, 2020, 18(3): 744 − 750. doi: 10.13271/j.mpb.018.000744 |
[20] |
HERB M, SCHRAMM M. Functions of ROS in macrophages and antimicrobial immunity[J]. Antioxidants, 2021, 10(2): 313. doi: 10.3390/antiox10020313 |
[21] |
MACHIDA S, YUAN Y A. Crystal structure of Arabidopsis thaliana dawdle forkhead-associated domain reveals a conserved phospho-threonine recognition cleft for dicer-like 1 binding[J]. Molecular Plant, 2013, 6(4): 1290 − 1300. doi: 10.1093/mp/sst007 |
[22] |
NARAYANAN L A, MUKHERJEE D, ZHANG S X, et al. Mutational analyses of a fork head associated domain protein, DAWDLE, in Arabidopsis thaliana[J]. American Journal of Plant Sciences, 2014, 5(18): 2811 − 2822. doi: 10.4236/ajps.2014.518297 |
[23] |
DING Z F, WANG H C, LIANG X Y, et al. Phosphoprotein and phosphopeptide interactions with the FHA domain from Arabidopsis kinase-associated protein phosphatase[J]. Biochemistry, 2007, 46(10): 2684 − 2696. doi: 10.1021/bi061763n |
[24] |
GUO X, YU X L, XU Z Y, et al. CC-type glutaredoxin, MeGRXC3, associates with catalases and negatively regulates drought tolerance in cassava (Manihot esculenta Crantz)[J]. Plant Biotechnology Journal, 2022, 20(12): 2389 − 2405. doi: 10.1111/pbi.13920 |
[25] |
MA X W, MA Q X, MA M Q, et al. Cassava MeRS40 is required for the regulation of plant salt tolerance[J]. Journal of Integrative Agriculture, 2023, 22(5): 1396 − 1411. doi: 10.1016/j.jia.2023.04.003 |
[26] |
CUI M, AN F F, CHEN S B, et al. Expression pattern and functional analysis of MebHLH149 gene in response to cassava bacterial blight[J]. Plants, 2024, 13(17): 2422. doi: 10.3390/plants13172422 |
[27] |
SIES H, BELOUSOV V V, CHANDEL N S, et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology[J]. Nature Reviews Molecular Cell Biology, 2022, 23(7): 499 − 515. doi: 10.1038/s41580-022-00456-z |
[28] |
LIU P, ZHANG X X, ZHANG F, et al. A virus-derived siRNA activates plant immunity by interfering with ROS scavenging[J]. Molecular Plant, 2021, 14(7): 1088 − 1103. doi: 10.1016/j.molp.2021.03.022 |
[29] |
KONG L, MA X Y, ZHANG C, et al. Dual phosphorylation of DGK5-mediated PA burst regulates ROS in plant immunity[J]. Cell, 2024, 187(3): 609 − 623.e21. doi: 10.1016/j.cell.2023.12.030 |
[30] |
WEI J, WANG X, HU Z, et al. The Puccinia striiformis effector Hasp98 facilitates pathogenicity by blocking the kinase activity of wheat TaMAPK4[J]. Journal of Integrative Plant Biology, 2022, 65(1): 249 − 264. doi: 10.1111/jipb.13374 |