留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

豆大蓟马钠离子通道基因克隆及分析

潘雪莲 杨磊 袁琳琳 陈龙威 吴少英

潘雪莲,杨磊,袁琳琳,等. 豆大蓟马钠离子通道基因克隆及分析[J]. 热带生物学报,2022, 13(3):249−258. DOI:10.15886/j.cnki.rdswxb.2022.03.007 doi:  10.15886/j.cnki.rdswxb.2022.03.007
引用本文: 潘雪莲,杨磊,袁琳琳,等. 豆大蓟马钠离子通道基因克隆及分析[J]. 热带生物学报,2022, 13(3):249−258. DOI:10.15886/j.cnki.rdswxb.2022.03.007 doi:  10.15886/j.cnki.rdswxb.2022.03.007
PAN Xuelian, YANG Lei, YUAN Linlin, CHEN Weilong, WU Shaoying. Cloning and analysis of sodium channel of Megalurothrips usitatus[J]. Journal of Tropical Biology, 2022, 13(3): 249-258. doi: 10.15886/j.cnki.rdswxb.2022.03.007
Citation: PAN Xuelian, YANG Lei, YUAN Linlin, CHEN Weilong, WU Shaoying. Cloning and analysis of sodium channel of Megalurothrips usitatus[J]. Journal of Tropical Biology, 2022, 13(3): 249-258. doi: 10.15886/j.cnki.rdswxb.2022.03.007

豆大蓟马钠离子通道基因克隆及分析

doi: 10.15886/j.cnki.rdswxb.2022.03.007
基金项目: 海南省重点研发项目(ZDYF2021XDNY190);国家自然科学基金项目(31960539)
详细信息
    第一作者:

    潘雪莲(1997−),女,海南大学植物保护学院2019级硕士研究生. E-mail:1774953266@qq.com

    通信作者:

    吴少英(1980−),女,教授,博士生导师. 研究方向:昆虫神经毒理及生理生化. E-mail:wsywsy6000@hainanu.edu.cn

Cloning and analysis of sodium channel of Megalurothrips usitatus

  • 摘要: 拟除虫菊酯类药剂的作用靶标为昆虫钠离子通道Nav,为了探明豆大蓟马(Megalurothrips usitatus)钠离子通道基因(MuNav)的特性,本研究采用PCR技术克隆得到MuNav序列(序列号MZ043856),该基因全长6 279 bp,编码2 093 aa,具有4个同源结构域,每个同源结构域含6个跨膜片段。同源比对发现,豆大蓟马与棕榈蓟马(Thrips palmi )Nav序列相似度高达94.88%,表明它们具有较近的亲缘关系。
  • 图  2  豆大蓟马钠离子通道拓扑图

    图  4  豆大蓟马与其他59种昆虫的钠离子通道系统发育树分析

    表  1  进化树分析Nav NCBI序列号

    昆虫拉丁文NCBI序列号昆虫拉丁文NCBI序列号
    Acromyrmex echinatior XP_011061306.1 Aedes aegypti ACB37024.1
    Anopheles gambiae CAM12801.1 Apis cerana XP_016917417.1
    Apis dorsata XP_006613060.1 Apis florea XP_012347662.1
    Apis mellifera NP_001159377.1 Apolygus lucorum ALF41049.1
    Athalia rosae XP_025602777.1 Atta cephalotes XP_012055204.1
    Bactrocera dorsalis XP_029407928.1 Bactrocera oleae XP_036228508.1
    Blattella germanica AAC47483.1 Bombus impatiens ARH02610.1
    Bombus vancouverensis nearcticus XP_033202238.1 Bombyx mori NP_001136084.1
    Brassicogethes aeneus AJM87404.1 Camponotus floridanus XP_025269364.1
    Ceratitis capitate XP_020717222.1 Cimex lectularius NP_001303632.1
    Copidosoma floridanum XP_023247004.1 Diachasma alloeum XP_015109194.1
    Dinoponera quadriceps XP_014472738.1 Drosophila melanogaster AAB59195.1
    Dufourea novaeangliae XP_015436344.1 Eufriesea Mexicana XP_017755817.1
    Fopius arisanus XP_011306701.1 Habropoda laboriosa XP_017797362.1
    Halyomorpha halys XP_024214489.1 Helicoverpa zea ADF80418.1
    Heliothis virescens AAC26513.1 Liposcelis bostrychophila AGL91669.1
    Megachile rotundata XP_012144116.1 Microplitis demolitor XP_014298584.1
    Monomorium pharaonis XP_012540554.1 Musca domestica NP_001273814.1
    Nasonia vitripennis NP_001128390.1 Odontomachus brunneus XP_032685128.1
    Ooceraea biroi RLU19677.1 Orussus abietinus XP_012272834.1
    Papilio machaon XP_014357465.1 Papilio xuthus XP_013169662.1
    Pediculus humanus capitis AAP20108.1 Plutella xylostella BAF37093.2
    Pogonomyrmex barbatus XP_011636355.1 Polistes canadensis XP_014608498.1
    Polistes dominula XP_015185094.1 Solenopsis invicta XP_039304541.1
    Stomoxys calcitrans XP_013100826.1 Thrips plami XP_034241363.1
    Tribolium castaneum EFA11577.2 Trichogramma pretiosum XP_014230252.1
    Varroa destructor AAP13992.1 Vollenhovia emeryi XP_011881693.1
    Wasmannia auropunctata XP_011689749.1 Zeugodacus cucurbitae XP_028896326.1
    下载: 导出CSV
  • [1] 杨士弘. 海南省气候特点与城市规划刍议[J]. 热带地理, 1989(4): 362 − 369.
    [2] 刘光琳, 谢青夏, 梁丽, 等. 蔬菜 中国最大的秋冬“菜篮子”[J]. 农家之友, 2018(12): 16 − 17.
    [3] 马晓春, 宋莉莉. 海南省蔬菜产业面临的挑战与机遇[J]. 农业展望, 2013, 9(7): 54 − 57.
    [4] HUAN Z B, LUO J H, XU Z, et al. Residues, dissipation, and risk assessment of spinosad in cowpea under open field conditions [J]. Environmental Monitoring and Assessment, 2015, 187(11): 706 − 713. doi:  10.1007/s10661-015-4942-3
    [5] 刘自更, 何永东. 海南统计年鉴: 2021[M]. 北京: 中国统计出版社, 2021: 4 − 5.
    [6] LIU P P, JIA W T, ZHENG X, et al. Predation functional response and life table parameters of Orius sauteri (Hemiptera: Anthocoridae) feeding on Megalurothrips usitatus (Thysanoptera: Thripidae) [J]. Florida Entomologist, 2018, 101(2): 254 − 259. doi:  10.1653/024.101.0216
    [7] WANG X S, SHAUKTA A, HAN Y, et al. Morphology and distribution of the antennal sensilla of two species, Megalurothrips usitatus and Thrips palmi (Thysanoptera: Thripidae) [J]. Insects, 2019, 10(8): 251 − 260. doi:  10.3390/insects10080251
    [8] 夏西亚, 付步礼, 李强, 等. 蓟马类害虫诱控技术研究进展[J]. 农学学报, 2017, 7(2): 31 − 35. doi:  10.11923/j.issn.2095-4050.cjas16080010
    [9] 邱海燕, 刘奎, 李鹏, 等. 豆大蓟马的生物学特性研究[J]. 热带作物学报, 2014, 35(12): 2437 − 2441. doi:  10.3969/j.issn.1000-2561.2014.12.021
    [10] 李荣云, 赖廷锋, 欧李坚, 等. 合浦县豇豆蓟马危害特点及防治技术[J]. 现代农业科技, 2011(19): 211. doi:  10.3969/j.issn.1007-5739.2011.19.139
    [11] 唐良德, 付步礼, 邱海燕, 等. 豆大蓟马对12种杀虫剂的敏感性测定[J]. 热带作物学报, 2015, 36(3): 570 − 574. doi:  10.3969/j.issn.1000-2561.2015.03.021
    [12] 唐良德, 赵海燕, 付步礼, 等. 海南地区豆大蓟马田间种群的抗药性监测[J]. 环境昆虫学报, 2016, 38(5): 1032 − 1037.
    [13] 刘钦梅. 蚊虫拟除虫菊酯类杀虫剂抗性基因的研究[D]. 海口: 海南大学, 2016.
    [14] DONG K, DU Y Z, FRANK R, et al. Molecular biology of insect sodium channels and pyrethroid resistance [J]. Insect Biochemistry and Molecular Biology, 2014, 50(1): 1 − 17.
    [15] CATTERALL W A. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. [J]. Neuron, 2000, 26(1): 13 − 25. doi:  10.1016/S0896-6273(00)81133-2
    [16] BRACKENBURY W J, ISOM L L. Na+ channel β subunits: overachievers of the ion channel family [J]. Frontiers in Pharmacology, 2011(2): 53.
    [17] 吴少英, 段文波, 李芬, 等. 昆虫钠离子通道的研究进展[J]. 昆虫学报, 2021, 64(7): 862 − 874.
    [18] LOUGHNEY K, KREBER R, GANZTZKY B. Molecular analysis of the para locus, a sodium channel gene in Drosophila [J]. Cell, 1989, 58(6): 1143 − 1154. doi:  10.1016/0092-8674(89)90512-6
    [19] LIU Z, SONG W, DONG K. Persistent tetrodotoxin-sensitive sodium current resulting from U-to-C RNA editing of an insect sodium channel [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(32): 11862 − 11867. doi:  10.1073/pnas.0307695101
    [20] RIEDER L E, SAVVA Y A, REYNA M A , et al. Dynamic response of RNA editing to temperature in Drosophila[J]. BMC Biology, 2015, 13(1) . DOI: 10.1186/s12915-014-0111-3.
    [21] ZHANG K, CHEN M, WANG H, et al. Molecular characterization and functional expression of voltage‐gated sodium channel variants in Apolygus lucorum (Meyer‐Dür)[J]. Pest Management Science, 2020, 76(6): 2095 − 2104.
    [22] DUAN Y, DOU S, LUO S, et al. Adaptation of A-to-I RNA editing in Drosophila[J]. PLoS Genet, 2017, 13(3): e1006648. doi: 10.1371/journal.pgen.1006648. PMID: 28282384; PMCID: PMC5365144.
    [23] SONG W, LIU Z, TAN J, et al. RNA editing generates tissue-specific sodium channels with distinct gating properties [J]. Journal of Biological Chemistry, 2004, 279(31): 32554. doi:  10.1074/jbc.M402392200
    [24] SEEBURG P H. A-to-I editing: new and old sites, functions and specula-tions [J]. Neuron, 2002, 35(1): 17 − 20. doi:  10.1016/S0896-6273(02)00760-2
    [25] MALDONADO C, ALICEA D, GONZALEZ M, et al. Adar is essential for optimal presynaptic function [J]. Molecular and Cellular Neuroscience, 2012, 52(1): 173 − 180.
    [26] HANRAHAN C J, PALLADINO M J, GANETZKY B, et al. RNA editing of the Drosophila para Na+ channel transcript: evolutionary conservation and developmental regulation [J]. Genetics, 2000, 155(3): 1149 − 1160. doi:  10.1093/genetics/155.3.1149
    [27] 邓登辉, 段文波, 王颢, 等. 拟果蝇钠离子通道基因克隆及其生物信息学分析[J]. 中国生物防治学报, 2021, 37(2): 340 − 348. DOI:10.16409/j.cnki.2095-039x.2021.03.012.
    [28] SMITH T J, LEE S H, INGES P J, et al. The L1014F point mutation in the house fly Vssc1 sodium channel confers knockdown resistance to pyrethroids. [J]. Insect Biochemistry and Molecular Biology, 1997, 27(10): 807 − 812. doi:  10.1016/S0965-1748(97)00065-9
    [29] LYND A, ORUNI A, VAN'T Hof A E, et al. Insecticide resistance in Anopheles gambiae from the northern Democratic Republic of Congo, with extreme knockdown resistance (kdr) mutation frequencies revealed by a new diagnostic assay[J]. Malaria Journal, 2018, 17(1).
    [30] GHAVAMI M B, HAGHI F P, ALIBABAEI Z, et al. First report of target site insensitivity to pyrethroids in human flea, Pulex irritans (Siphonaptera: Pulicidae) [J]. Pesticide Biochemistry & Physiology, 2018, 146: 97 − 105.
    [31] QIAN W, LIU N, YANG Y, et al. A survey of insecticide resistance-conferring mutations in multiple targets in Anopheles sinensis populations across Sichuan, China [J]. Parasites & Vectors, 2021, 14(1): 169.
    [32] SILVA Martins W F, SIVA Pereira B N, VIEIAR Alves A T, et al. Development and application of a tri-allelic PCR assay for screening Vgsc-L1014F kdr mutations associated with pyrethroid and organochlorine resistance in the mosquito Culex quinquefasciatus [J]. Parasites & vectors, 2019, 12(1): 232.
    [33] LEE S H, SMITH T J, KNIPPLE D C, et al. Mutations in the house fly Vssc1 sodium channel gene associated with super-kdr resistance abolish the pyrethroid sensitivity of Vssc1/tipE sodium channels expressed in Xenopus oocytes [J]. Insect Biochemistry & Molecular Biology, 1999, 29(2): 185 − 194.
    [34] YAN R, ZHOU Q, XU Z, et al. Three sodium channel mutations from Aedes albopictus confer resistance to Type I, but not Type II pyrethroids[J]. Insect Biochemistry and Molecular Biology, 2020, 123: 103411. doi: 10.1016/j.ibmb.2020.103411. Epub 2020 May 22. PMID: 32450204.
    [35] WANG L, NOMURA Y, DU Y, et al. A Mutation in the intracellular loop III/IV of mosquito sodium channel synergizes the effect of mutations in Helix IIS6 on pyrethroid resistance [J]. Molecular Pharmacology, 2015, 87(3): 421. doi:  10.1124/mol.114.094730
    [36] JOURAKU A, KUWAZAKI S, IIDA H, et al. T929I and K1774N mutation pair and M918L single mutation identified in the voltage-gated sodium channel gene of pyrethroid-resistant Thrips tabaci (Thysanoptera: Thripidae) in Japan [J]. Pesticide Biochemistry & Physiology, 2019, 158: 77 − 87.
    [37] DU Y, NOMURA Y, SATAR G, et al. Molecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(29): 11785 −11790.
    [38] TAN J, LIU Z, TSAI T-D, et al. Novel para mutations abolish sodium channel sensitivity to pyrethroids [J]. Insect Biochemistry & Molecular Biology, 2001, 32: 445 − 454.
    [39] LIU Z, TAN J, VALLES S M, et al. Synergistic interaction between two cockroach sodium channel mutations and a tobacco budworm sodium channel mutation in reducing channel sensitivity to a pyrethroid insecticide [J]. Insect Biochemistry & Molecular Biology, 2002, 32(4): 397 − 404.
    [40] ZHAO M, DONG Y, RAN X, et al. Sodium channel point mutations associated with pyrethroid resistance in Chinese strains of Culex pipiens quinquefasciatus (Diptera: Culicidae) [J]. Parasites & Vectors, 2014, 7(1): 369.
  • [1] 李佳雪, 丁一, 王猛, 李涛, 郭攀阳, 刘成立, 韦双双, 黄家权, 李洪立, 胡文斌, 汤华.  火龙果HubHLH基因家族的全基因组分析及其对冬季补光诱导开花的表达响应 . 热带生物学报, 2024, 15(2): 198-209. doi: 10.15886/j.cnki.rdswxb.20220108
    [2] 董晨, 郑雪文, 王弋, 全振炫, 李伟才.  荔枝GRF基因家族的全基因组鉴定及表达分析 . 热带生物学报, 2024, 15(2): 190-197. doi: 10.15886/j.cnki.rdswxb.20230099
    [3] 刘云飞, 李言, 田维敏.  橡胶树蛋白激酶基因SnRK2.7的克隆及表达 . 热带生物学报, 2024, 15(1): 1-9. doi: 10.15886/j.cnki.rdswxb.20230004
    [4] 张仲, 邹游兴, 但建国.  施氮水平对普通大蓟马繁殖及子代性比的影响 . 热带生物学报, 2024, 15(1): 79-84. doi: 10.15886/j.cnki.rdswxb.20230061
    [5] 贾素行, 朱寿松, 符仁稳, 李春霞, 陈银华.  木薯MePPD3基因的克隆及功能分析 . 热带生物学报, 2024, 15(1): 10-18. doi: 10.15886/j.cnki.rdswxb.20230035
    [6] 王正磊, 刘凯扬, 袁琳琳, 李芬, 吴少英.  斑翅果蝇解毒代谢相关基因的鉴定与分析 . 热带生物学报, 2023, 14(6): 660-667. doi: 10.15886/j.cnki.rdswxb.20230009
    [7] 金柳, 李萌晗, 郑育声, 李东栋.  油棕乙酰基酰基载体蛋白硫酯酶EgFATA基因的克隆与功能分析 . 热带生物学报, 2023, 14(4): 357-363. doi: 10.15886/j.cnki.rdswxb.2023.04.002
    [8] 徐春华, 李超萍, 时涛, 王国芬, 蔡吉苗, 李博勋, 黄贵修.  木薯细菌性萎蔫病菌2个候选抗铜基因簇的克隆和分析 . 热带生物学报, 2023, 14(5): 499-505. doi: 10.15886/j.cnki.rdswxb.20220009
    [9] 郭灵杭, 吴圣勇, 唐良德.  豆大蓟马在海南的发生动态及其卵和蛹的防治药剂初筛 . 热带生物学报, 2023, 14(3): 330-337. doi: 10.15886/j.cnki.rdswxb.2023.03.010
    [10] 金海峰, 王朝政, 侯清芳, 咸利民, 张华剑, 吴少英.  普通大蓟马MuRhodopsin基因的全长克隆及生物信息学分析 . 热带生物学报, 2023, 14(6): 651-659. doi: 10.15886/j.cnki.rdswxb.20220105
    [11] 李歆毓, 丁梦莹, 冯尔辉, 张源源, 章可兰, 万迎朗.  白边侧足海天牛全基因组Survey分析 . 热带生物学报, 2022, 13(5): 457-463. doi: 10.15886/j.cnki.rdswxb.2022.05.005
    [12] 符丹凤, 刘洪涛, 杨明秋, 何玉贵.  斑节对虾PmML1PmML2基因的鉴定及表达分析 . 热带生物学报, 2022, 13(5): 440-450. doi: 10.15886/j.cnki.rdswxb.2022.05.003
    [13] 武映宏, 黄东益, 王永, 张大鹏, 刘蕊, 孙熹微, 肖勇.  椰子ALDH基因家族的鉴定及生物信息学分析 . 热带生物学报, 2022, 13(6): 541-549. doi: 10.15886/j.cnki.rdswxb.2022.06.001
    [14] 韩语, 王昕, 潘纪汶, 杨诺, 郭桂英, 李迁, 曾纪锋, 郑继平.  鳄鱼源气单胞菌的毒力基因与耐药特性分析 . 热带生物学报, 2021, 12(1): 96-102. doi: 10.15886/j.cnki.rdswxb.2021.01.014
    [15] 潘雪莲, 杨磊, 金海峰, 陆容材, 李芬, 曹凤勤, 吴少英.  豆大蓟马在海南发生及防治的研究进展 . 热带生物学报, 2021, 12(4): 508-513. doi: 10.15886/j.cnki.rdswxb.2021.04.014
    [16] 宋娜, 张刘宁颖, 曹敏, 郭文雅, 洪雨慧, 吴金山, 陈银华, 于晓惠.  木薯ERF转录因子调控的靶基因筛选与表达分析 . 热带生物学报, 2020, 11(2): 177-189. doi: 10.15886/j.cnki.rdswxb.2020.02.008
    [17] 门佳丽, 李芳, 孙进华, 许云.  荔枝‘妃子笑’AP2同源基因的克隆及表达 . 热带生物学报, 2020, 11(2): 190-199. doi: 10.15886/j.cnki.rdswxb.2020.02.009
    [18] 闫冰玉, 巩笑笑, 谭玉荣, 王丹, 高璇, 张恒, 李双江, 王鹏, 潘英文, 刘进平.  文心兰OnRR10基因的克隆及表达分析 . 热带生物学报, 2020, 11(3): 288-295. doi: 10.15886/j.cnki.rdswxb.2020.03.005
    [19] 曹欣, 唐燕琼, 李宏, 马香, 刘柱.  Flag-ALD融合载体构建及蛋白表达 . 热带生物学报, 2020, 11(2): 132-137, 155. doi: 10.15886/j.cnki.rdswxb.2020.02.002
    [20] 白雪杨, 陈秀珍, 黄天帆, 江行玉, 周扬.  盐胁迫下拟南芥SCAMP基因克隆和表达的生物信息学分析 . 热带生物学报, 2020, 11(2): 138-144. doi: 10.15886/j.cnki.rdswxb.2020.02.003
  • 加载中
图(4) / 表 (1)
计量
  • 文章访问数:  575
  • HTML全文浏览量:  296
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-15
  • 录用日期:  2022-02-28
  • 修回日期:  2022-02-26
  • 网络出版日期:  2022-03-09
  • 刊出日期:  2022-05-23

豆大蓟马钠离子通道基因克隆及分析

doi: 10.15886/j.cnki.rdswxb.2022.03.007
    基金项目:  海南省重点研发项目(ZDYF2021XDNY190);国家自然科学基金项目(31960539)
    作者简介:

    潘雪莲(1997−),女,海南大学植物保护学院2019级硕士研究生. E-mail:1774953266@qq.com

    通讯作者: 吴少英(1980−),女,教授,博士生导师. 研究方向:昆虫神经毒理及生理生化. E-mail:wsywsy6000@hainanu.edu.cn

摘要: 拟除虫菊酯类药剂的作用靶标为昆虫钠离子通道Nav,为了探明豆大蓟马(Megalurothrips usitatus)钠离子通道基因(MuNav)的特性,本研究采用PCR技术克隆得到MuNav序列(序列号MZ043856),该基因全长6 279 bp,编码2 093 aa,具有4个同源结构域,每个同源结构域含6个跨膜片段。同源比对发现,豆大蓟马与棕榈蓟马(Thrips palmi )Nav序列相似度高达94.88%,表明它们具有较近的亲缘关系。

English Abstract

潘雪莲,杨磊,袁琳琳,等. 豆大蓟马钠离子通道基因克隆及分析[J]. 热带生物学报,2022, 13(3):249−258. DOI:10.15886/j.cnki.rdswxb.2022.03.007 doi:  10.15886/j.cnki.rdswxb.2022.03.007
引用本文: 潘雪莲,杨磊,袁琳琳,等. 豆大蓟马钠离子通道基因克隆及分析[J]. 热带生物学报,2022, 13(3):249−258. DOI:10.15886/j.cnki.rdswxb.2022.03.007 doi:  10.15886/j.cnki.rdswxb.2022.03.007
PAN Xuelian, YANG Lei, YUAN Linlin, CHEN Weilong, WU Shaoying. Cloning and analysis of sodium channel of Megalurothrips usitatus[J]. Journal of Tropical Biology, 2022, 13(3): 249-258. doi: 10.15886/j.cnki.rdswxb.2022.03.007
Citation: PAN Xuelian, YANG Lei, YUAN Linlin, CHEN Weilong, WU Shaoying. Cloning and analysis of sodium channel of Megalurothrips usitatus[J]. Journal of Tropical Biology, 2022, 13(3): 249-258. doi: 10.15886/j.cnki.rdswxb.2022.03.007
  • 海南岛地处热带,属热带季风气候,除中部山区外,年均气温为23~26 ℃,是天然温室。同时,海南大部分地区年降雨量都超过1 700 mm,良好的水热条件,非常适合各类农作物的种植[1]。海南是我国最早实现“南菜北运”的省份,豇豆(Vigna unguiculata)就是其中尤为重要的一种[2-3],作为海南农民增产提收最重要的蔬菜品种,从2009—2020年,豇豆的种植面积不断增加,并达到了2.25万hm2,总产量为58万t,约占海南省蔬菜总产量的1/10 [4-5]。但随着豇豆种植面积的逐年增加,病虫害的发生也逐年加重。豆大蓟马(Megalurothrips usitatus)是豆科作物的一种毁灭性害虫,严重危害豇豆品质和产量[6-7]。该虫又名豆花蓟马或普通大蓟马,属缨翅目蓟马科,广泛分布于热带和亚热带地区,其寄主植物主要为豆科类作物[6]。豆大蓟马生长周期短、繁殖力强、隐匿性强,世代重叠严重,因此,极易在短时间内大面积爆发[8]。豆大蓟马为锉吸式口器,其在取食过程刺穿植物组织并吸取植物汁液,造成豇豆叶片皱缩和畸形,严重时会造成生长点萎缩,生长缓慢甚至停止,荚果受害果实表面会变得粗糙或者瘢痕,降低豇豆的果实质量[9-10]。此外,该虫还可以传播植物病毒病,从而对豇豆造成间接危害。目前,其防治仍然以化学防治为主[11]。拟除虫菊酯为一类作用于昆虫钠离子通道(Nav)的广谱性杀虫剂,具有易降解等优点,因此在田间已经大面积应用。其通过延长Nav开放时间使动作电位升高,导致神经细胞重复放电,从而实现杀虫的目的[12]。近年来,随着田间用药量的成倍增加,豆大蓟马对拟除虫菊酯类药剂的抗药性不断增强[12]。其产生抗药性的主要原因之一是Nav发生抗性突变,从而影响药剂与Nav的结合能力,导致敏感性降低进而产生抗药性[13-14]。昆虫Navα亚基和β亚基组成,α亚基由4个同源结构域组成,每个同源结构域含有6个跨膜片段,其中,S1~S4称为电压传感模块,而S5和S6区域称为P区,β亚基辅助α亚基调控Nav表达[14-16]

    本研究组前期的研究表明,海南省豆大蓟马田间种群对拟除虫菊酯类杀虫剂已经产生了抗性,但对于豆大蓟马钠离子通道结构与功能仍不清楚。因此,本研究对豆大蓟马钠离子通道基因(MuNav)进行克隆和序列分析,旨在为后续解析豆大蓟马对拟除虫菊酯抗性机制奠定基础。

    • 豆大蓟马于2018年12月采自海南省海口市美兰区海南大学海甸校区基地,并在实验室内长期饲养,期间未施用任何药剂。饲养方法如下:将豆大蓟马成虫及若虫转移至240 mL养虫罐中,将新鲜豇豆洗净,切成长度约5 cm的豆荚放入20%蜂蜜水中浸泡1 min,晾干,放入养虫罐中,置于人工气候箱(PYX-400Q-A,广东韶关科力实验仪器有限公司)中饲养。成若虫的饲养温度为26 ℃,湿度为60 %~65 %,光周期16 L∶8 D。

    • 取豆大蓟马成虫30~40头,通过Trizol法提取RNA,并用1 %的琼脂糖进行凝胶电泳。随后进行反转录,方法参照Prime ScriptTM 1st Strand cDNA Synthesis Kit(东洋纺生物科技有限公司,上海)说明书。根据NCBI西花蓟马(Frankliniella occidentalis)(XM_026422864.1)和棕榈蓟马(Thrips palmi)(XM_034385472.1)Nav序列,使用Primer 5软件对MuNav进行通用引物设计,正向引物为:ATGCCGAGTGTCCGGGAGTCG,反向引物为:TCAGACATCCGCAAGGGCCGGAG。以上述cDNA为模板,进行PCR扩增,反应体系如下:cDNA 1 μL、dNTP Mix 1 μL、上下游引物各2 μL、ddH2O 18 μL、2×Phanta Max Buffer (Mg2+plus) 25 μL、Phanta Max Super-Fidelity DNA Ploymerase 1 μL。PCR反应条件如下:95 ℃预变性3 min;95 ℃ 15 s,56 ℃ 15 s,72 ℃延伸6.5 min,共35个循环;72 ℃反应后延伸8 min。

    • 用Cycle-Pure Kit(OMEGA, America)将上述PCR产物进行纯化回收,用NanoDrop 2000分光光度计(赛默飞世尔科技(中国)有限公司,上海,中国)对回收产物进行浓度测定,并置于−20 ℃备用。分别用HindⅢ-HF和X maⅠ对PGH 19进行双酶切,反应时间为2 h,温度为37 ℃,将纯化回收产物和PGH 19链接,反应条件为:37 ℃、45 min,取出后在冰上冷却5 min,将连接好的产物导入感受态细胞stbl 2中并涂板,方法参照stbl 2感受态细胞(吐露港生物科技有限公司,上海)说明书,将平板倒置在22 ℃的保温箱中培养。在96孔板每孔中加入200 μL LA培养基,并挑取单克隆置于其中,密封后180 r·min−1,30 ℃摇菌12 h。取50 μL菌液加入5 mL LA培养基中于30 ℃、180 r·min−1 2次摇菌16 h,使用Plasmid mini Kit(OMEGA, America)试剂盒进行质粒提取,并进行测序。

    • 克隆得到MuNav全长,并上传至NCBI(GenBank accession number: MZ043856),用Simple Modular Architecture Research Tool预测其保守性结构域。同时,从NCBI上下载得到其他58种昆虫的Nav全长(表1)。随后,用Clustal Omega软件(https://www.ebi.ac.uk/Tools/msa/clustalo/)进行多序列比对,并利用Mega 7 (DNASTAR, America)软件,采用最大似然法构建系统发育树,自举值设置为1 000。

      表 1  进化树分析Nav NCBI序列号

      昆虫拉丁文NCBI序列号昆虫拉丁文NCBI序列号
      Acromyrmex echinatior XP_011061306.1 Aedes aegypti ACB37024.1
      Anopheles gambiae CAM12801.1 Apis cerana XP_016917417.1
      Apis dorsata XP_006613060.1 Apis florea XP_012347662.1
      Apis mellifera NP_001159377.1 Apolygus lucorum ALF41049.1
      Athalia rosae XP_025602777.1 Atta cephalotes XP_012055204.1
      Bactrocera dorsalis XP_029407928.1 Bactrocera oleae XP_036228508.1
      Blattella germanica AAC47483.1 Bombus impatiens ARH02610.1
      Bombus vancouverensis nearcticus XP_033202238.1 Bombyx mori NP_001136084.1
      Brassicogethes aeneus AJM87404.1 Camponotus floridanus XP_025269364.1
      Ceratitis capitate XP_020717222.1 Cimex lectularius NP_001303632.1
      Copidosoma floridanum XP_023247004.1 Diachasma alloeum XP_015109194.1
      Dinoponera quadriceps XP_014472738.1 Drosophila melanogaster AAB59195.1
      Dufourea novaeangliae XP_015436344.1 Eufriesea Mexicana XP_017755817.1
      Fopius arisanus XP_011306701.1 Habropoda laboriosa XP_017797362.1
      Halyomorpha halys XP_024214489.1 Helicoverpa zea ADF80418.1
      Heliothis virescens AAC26513.1 Liposcelis bostrychophila AGL91669.1
      Megachile rotundata XP_012144116.1 Microplitis demolitor XP_014298584.1
      Monomorium pharaonis XP_012540554.1 Musca domestica NP_001273814.1
      Nasonia vitripennis NP_001128390.1 Odontomachus brunneus XP_032685128.1
      Ooceraea biroi RLU19677.1 Orussus abietinus XP_012272834.1
      Papilio machaon XP_014357465.1 Papilio xuthus XP_013169662.1
      Pediculus humanus capitis AAP20108.1 Plutella xylostella BAF37093.2
      Pogonomyrmex barbatus XP_011636355.1 Polistes canadensis XP_014608498.1
      Polistes dominula XP_015185094.1 Solenopsis invicta XP_039304541.1
      Stomoxys calcitrans XP_013100826.1 Thrips plami XP_034241363.1
      Tribolium castaneum EFA11577.2 Trichogramma pretiosum XP_014230252.1
      Varroa destructor AAP13992.1 Vollenhovia emeryi XP_011881693.1
      Wasmannia auropunctata XP_011689749.1 Zeugodacus cucurbitae XP_028896326.1
    • 克隆得到MuNav,其全长为6279 bp,编码2093 aa (GenBank:MZ043856) (图1),含有4个同源结构域,结构域 Ⅰ~Ⅳ,每个同源结构域含有6个跨膜片段,第3和第4结构域之间含有“MFM”疏水性残基,符合昆虫Nav的典型特征(图2)。

      图  1  豆大蓟马钠离子通道氨基酸序列图

      图  2  豆大蓟马钠离子通道拓扑图

      将MuNav的氨基酸序列与西花蓟马、棕榈蓟马、绿盲蝽(Apolygus lucorum)、美洲大蠊(Periplaneta americana)Nav进行同源性比对,发现其与棕榈蓟马Nav序列的相似度高达94.88%,与西花蓟马Nav序列的相似度同样高达94.68%,而与美洲大蠊和绿盲蝽Nav的相似度分别仅为80.74%和80.19%,表明豆大蓟马与蓟马类昆虫的亲缘关系较近,而与其他目昆虫则发生了分化(图3)。

    • 进化树的结果表明(图4),MuNav与其他昆虫均存在一定的亲缘关系。其中,豆大蓟马与棕榈蓟马(T. palmi)、烟蓟马(Thrips tabaci) 和西花蓟马聚为一类,显示蓟马类昆虫Nav符合进化过程,即同一类昆虫聚类在相近位置。反之,豆大蓟马与其他目的昆虫,如黑腹果蝇(Drosophila melanogaster)、德国小蠊(Blattella germanica)、绿盲蝽等则发生了较大程度的分化,亲缘关系相对较远。

      图  4  豆大蓟马与其他59种昆虫的钠离子通道系统发育树分析

    • 大部分昆虫仅编码1条或2条Nav,昆虫Nav由1个分子量约为260 kD的α亚基和5个辅助小亚基组成,α亚基具有Nav活性,而辅助小亚基则起到调节Nav表达的作用。本研究通过PCR的方法克隆得到了MuNav全长序列,发现其与其他昆虫Nav结构类似,有4个同源性极高的跨膜结构域,即结构域I、结构域II、结构域III和结构域IV组成,且每个结构域均包含6个疏水性跨膜螺旋体(S1~S6)。在MuNav的P-LOOP环上同样鉴定到与其他昆虫类似的4个保守性氨基酸残基D、 E、 K、A和1个关键失活阀门MFM,这些结果均表明,MuNav具有昆虫Nav特有的全部结构特征,这为后续MuNav功能研究奠定了基础。

      本研究的序列比对结果表明,豆大蓟马与其他目昆虫,如蜚蠊目美洲大蠊和半翅目绿盲蝽Nav的序列相似性均高达80%以上,这为MuNav功能研究提供了重要参考。值得一提的是,豆大蓟马与其他蓟马类昆虫序列的相似性极高,如西花蓟马和棕榈蓟马的序列相似性高达94%以上,表明缨翅目蓟马类昆虫Nav的结构与功能极为保守。另外,基于NCBI上获取得到的59种昆虫Nav序列,构建了系统发育树。与上述序列比对结果类似,进化树结果表明虽然昆虫Nav具有一定的保守性,但豆大蓟马与其他蓟马类昆虫聚为一类,表明且它们在进化过程中极为保守,即发生的变异较小,而与其他昆虫则形成了不同的分支,表明它们发生了一定程度的分化。

      昆虫Nav可通过转录后修饰,即选择性剪切和RNA编辑实现其功能的多样性[17-18]。RNA编辑是mRNA在转录水平上通过碱基插入、缺失或替换,从而引起氨基酸改变,扩大了生物的遗传信息,增加Nav结构与功能的多样性,从而帮助其迅速适应外界环境的变化,其研究在过去的几年里逐渐得到重视[17,19-20]。昆虫Nav RNA编辑存在2种形式:一种是腺苷A去氨基转变为次黄嘌呤I,即A至I编辑,另外一种是U至C编辑。其中A至I的RNA编辑在昆虫中尤为常见,可导致蛋白质的结构和功能发生改变。如在黑腹果蝇、德国小蠊和绿盲蝽中均被鉴定到,并可引起昆虫神经性兴奋[21-23]。昆虫RNA编辑存在组织特异性,A-I RNA编辑主要发生在编码离子通道、神经递质受体或G蛋白偶联受体的神经系统基因转录本中[24-25]。例如,在黑腹果蝇钠通道转录本中发现了11个A-I编辑[26],在拟果蝇中发现了3个A-I的RNA编辑,分别是Q52R、C189Y和N1260D[27],而在德国小蠊和绿盲蝽Nav中也分别发现了2个和1个A-I RNA编辑[21,23]。此外,昆虫Nav还存在U-C编辑,该类型的RNA编辑一般存在卵巢和肠道中,如黑腹果蝇和德国小蠊体内F1919S位点的U-C编辑可产生持续电流[20]

      近年来,随着田间用药量的增加,昆虫对拟除虫菊酯的抗药性不断增加,Nav突变也越来越频繁,在很多高抗药性种群中发现多个突变位点。大部分昆虫中最常见的突变发生在 1 014位点,该位点在家蝇中最早被发现,由L突变为F,使家蝇对氯菊酯的敏感性降低了至少10倍,并且增加了拟除虫菊酯诱导的钠尾电流的衰减率[28]。除了家蝇外,在冈比亚按蚊(Anopheles gambiae)、人蚤(Pulex irritans)、中华按蚊(Anopheles sinensis)、致倦库蚊Culex quinquefasciatus)等昆虫中也发现了L1014突变[29-32]。除了1 014位点外,918位点氨基酸发生改变也会影响拟除虫菊酯药剂的敏感性。1999年,LEE等[33]对家蝇钠通道918位点进行定点修饰,用苏氨酸代替甲硫氨酸,通过双电极电压钳进行验证,发现其对高浓度的氯氰菊酯完全不敏感。在白纹伊蚊体内发现了I1532T和F1534S/L,当这2个突变单独出现时显著降低了对I型拟除虫菊酯类药剂氯菊酯和联苯菊酯的敏感性,但是对Ⅱ型拟除虫菊酯类药剂敏感性没有显著影响[34]。本研究未在MuNav中发现918和1 014位点突变,但在对序列分析时发现了T929I突变,其在对拟除虫菊酯杀虫剂产生抗性过程中的具体作用还需进一步实验探究。

      在高抗种群中,突变点往往都不是单个出现的,它们会同时出现2个突变点,大部分情况下该类型突往往比单点突变更高的抗药性。在蚊子中,Nav中单独的N1575Y突变不会改变昆虫对拟除虫菊的敏感性,但N1575Y和L1014F双突变的种群对氯氰菊酯的抗性是野生型的80倍,对溴氰菊酯的抗性是野生型的53倍,相较于单突变分别增加了3.4倍和9.8倍[35]。在烟蓟马中,T929I的单突变会导致烟蓟马对氯氰菊酯产生中等水平抗性,当T929I和K1774N双突变共同出现会导致烟蓟马对氯氰菊酯产生高等水平抗性(RR=2 700)[36]。反之,某些Nav双突变时,并不会降低钠通道的抗性,例如在埃及伊蚊体内,无论是V1023G/S996P还是V1023G/D1794Y对拟除虫菊酯的抗性都没有单一突变体高[37]。此外,有些位点单独突变不会改变钠通道的敏感性,但会显著降低其他位点对拟除虫菊酯杀虫剂的敏感性。例如,蟑螂体内E434K和C764R单独出现不会改变钠通道对溴氰菊酯的敏感性,但是E434K或C764R与L993F双突变时钠通道对溴氰菊酯的敏感性会降低100倍[38]。除单突变,双突变外,昆虫钠通道有时还会出现三突变,例如在蟑螂Nav中引入V409M突变,可使其对溴氰菊酯的敏感性降低了10倍,而当V409M、E434K、C764R 3个突变同时出现时,蟑螂对溴氰菊酯的敏感性降低了100倍[39]。除上述突变类型,昆虫体内Nav突变还会出现连锁反应,在致倦库蚊中,M943V和I973T就存在着明显的连锁反应,但是其生理意义还需进一步探索[40]。虽然在MuNav中未发现918和1 014位点突变,但豆大蓟马钠离子通道出现众多潜在的抗性位点(未发表),仍需用双电极电压钳技术进一步验证。

      本研究克隆了豆大蓟马钠离子通道全长序列,不仅扩展了昆虫钠离子通道的遗传信息,也为后续豆大蓟马抗性位点的鉴定,kdr抗性突变位点分子诊断技术的研发和探明化学杀虫剂与MuNav的结合能力奠定了基础,同时为延缓豆大蓟马抗药性的发展及抗药性治理指明了方向。

参考文献 (40)

目录

    /

    返回文章
    返回