[1] PENG W, LIU Y J, WU N, et al. Areca catechu L. (Arecaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology [J]. Journal of Ethnopharmacology, 2015, 164: 340 − 356. doi:  10.1016/j.jep.2015.02.010
[2] 曾琪. 槟榔化学成分的研究[D]. 长沙: 中南林业科技大学, 2007.
[3] 国家药典委员会. 中华人民共和国药典[M]. 北京: 中国医药科技出版社, 2015.
[4] HEATUBUN C D, DRANSFIELD J, FLYNN T, et al. A monograph of the betel nut palms (Areca: Arecaceae) of East Malaysia [J]. Botanical Journal of the Linnean Society, 2012, 168(2): 147 − 173. doi:  10.1111/j.1095-8339.2011.01199.x
[5] GILANI A H, GHAYUR M N, SAIFY Z S, et al. Presence of cholinomimetic and acetylcholinesterase inhibitory constituents in betel nut [J]. Life Sciences, 2004, 75(20): 2377 − 2389. doi:  10.1016/j.lfs.2004.03.035
[6] 易攀, 汤嫣然, 周芳, 等. 槟榔的化学成分和药理活性研究进展[J]. 中草药, 2019, 50(10): 2498 − 2504. doi:  10.7501/j.issn.0253-2670.2019.10.034
[7] ZHANG X L, REICHART P A. A review of betel quid chewing, oral cancer and precancer in Mainland China [J]. Oral Oncology, 2007, 43(5): 424 − 430. doi:  10.1016/j.oraloncology.2006.08.010
[8] HO T J, CHIANG C P, HONG C Y, et al. Induction of the c-jun protooncogene expression by areca nut extract and arecoline on oral mucosal fibroblasts [J]. Oral Oncology, 2000, 36(5): 432 − 436. doi:  10.1016/S1368-8375(00)00031-2
[9] 冯云枝, 凌天牖. 槟榔提取物对口腔黏膜成纤维细胞表达细胞间粘附分子-1的影响[J]. 华西口腔医学杂志, 2002, 20(4): 241 − 243. doi:  10.3321/j.issn:1000-1182.2002.04.003
[10] 刘东林, 王小莹, 杨冰, 等. 槟榔药理毒理研究进展[J]. 中国中药杂志, 2013, 38(14): 2273 − 2275.
[11] CHAVAN Y V, SINGHAL R S. Separation of polyphenols and arecoline from areca nut (Areca catechu L.) by solvent extraction, its antioxidant activity, and identification of polyphenols [J]. Journal of the Science of Food and Agriculture, 2013, 93(10): 2580 − 2589. doi:  10.1002/jsfa.6081
[12] TANG S N, ZHANG J, LIU D, et al. Three new areca alkaloids from the nuts of Areca catechu [J]. Journal of Asian Natural Products Research, 2017, 19(12): 1155 − 1159. doi:  10.1080/10286020.2017.1307187
[13] CAO M, YUAN H, DANIYAL M, et al. Two new alkaloids isolated from traditional Chinese medicine Binglang the fruit of Areca catechu [J]. Fitoterapia, 2019, 138(12): 104276.
[14] GIRI S, IDLE J R, CHEN C, et al. A Metabolomic approach to the metabolism of the areca nut alkaloids arecoline and arecaidine in the mouse [J]. Chemical Research in Toxicology, 2006, 19(6): 818 − 827. doi:  10.1021/tx0600402
[15] BHANDARE A M, KSHIRSAGAR A D, VYAWAHARE N S, et al. Potential analgesic, anti-inflammatory and antioxidant activities of hydroalcoholic extract of Areca catechu L. nut [J]. Food and Chemical Toxicology, 2010, 48(12): 3412 − 3417. doi:  10.1016/j.fct.2010.09.013
[16] KIM H J, KO J W, CHA S B, et al. Evaluation of 13-week repeated oral dose toxicity of Areca catechu in F344/N rats [J]. Food and Chemical Toxicology, 2018, 114: 41 − 51. doi:  10.1016/j.fct.2018.02.015
[17] ROGACHEV I, AHARONI A. UPLC-MS-based metabolite analysis in tomato [J]. Methods in Molecular Biology, 2012, 860: 129 − 144.
[18] SAITO K, MATSUDA F. Metabolomics for functional genomics, systems biology, and biotechnology [J]. Annual Review of Plant Biology, 2010, 61(1): 463 − 489. doi:  10.1146/annurev.arplant.043008.092035
[19] YANG Z, NAKABAYASHI R, OKAZAKI Y, et al. Toward better annotation in plant metabolomics: isolation and structure elucidation of 36 specialized metabolites from Oryza sativa (rice) by using MS/MS and NMR analyses [J]. Metabolomics, 2014, 10(4): 543 − 555. doi:  10.1007/s11306-013-0619-5
[20] FORCAT S, BENNETT M H, MANSFIELD J W, et al. A rapid and robust method for simultaneously measuring changes in the phytohormones ABA, JA and SA in plants following biotic and abiotic stress [J]. Plant Methods, 2008, 4(1): 16. doi:  10.1186/1746-4811-4-16
[21] LIN L Z, HARNLY J M. A screening method for the identification of glycosylated flavonoids and other phenolic compounds using a standard analytical approach for all plant materials [J]. Journal of Agriculture and Food Chemistry, 2007, 55(4): 1084 − 1096. doi:  10.1021/jf062431s
[22] CUYCKENS F, CLAEYS M. Mass spectrometry in the structural analysis of flavonoids [J]. Journal of Mass Spectrometry: JMS, 2004, 39(1): 1 − 15. doi:  10.1002/jms.585
[23] STOBIECKI M. Application of mass spectrometry for identification and structural studies of flavonoid glycosides [J]. Phytochemistry, 2000, 54(3): 237 − 256. doi:  10.1016/S0031-9422(00)00091-1
[24] KATOH A, UENOHARA K, AKITA M, et al. Early steps in the biosynthesis of NAD in Arabidopsis start with aspartate and occur in the plastid [J]. Plant Physiology, 2006, 141(3): 851 − 857. doi:  10.1104/pp.106.081091
[25] ASHIHARA H, LUDWIG I A, KATAHIRA R, et al. Trigonelline and related nicotinic acid metabolites: occurrence, biosynthesis, taxonomic considerations, and their roles in planta and in human health [J]. Phytochemistry Reviews, 2014, 14(5): 765 − 798.
[26] ZHENG X Q, HAYASHIBE E, ASHIHARA H. Changes in trigonelline (N-methylnicotinic acid) content and nicotinic acid metabolism during germination of mungbean (Phaseolus aureus) seeds [J]. Journal of Experimental Botany, 2005, 56(416): 1615 − 1623. doi:  10.1093/jxb/eri156
[27] MATSUI A, YIN Y, YAMANAKA K, et al. Metabolic fate of nicotinamide in higher plants [J]. Physiologia Plantarum, 2007, 131(2): 191 − 200.
[28] ZHENG X Q, ASHIHARA H. Distribution, biosynthesis and function of purine and pyridine alkaloids in Coffea arabica seedlings [J]. Plant Science, 2004, 166(3): 807 − 813. doi:  10.1016/j.plantsci.2003.11.024
[29] CHEN W, GAO Y, XIE W, et al. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism [J]. Nature Genetics, 2014, 46(7): 714 − 721. doi:  10.1038/ng.3007
[30] ASHIHARA H, DENG W W. Pyridine metabolism in tea plants: salvage, conjugate formation and catabolism [J]. Journal of Plant Research, 2012, 125(6): 781 − 791. doi:  10.1007/s10265-012-0490-x
[31] KATAHIRA R, ASHIHARA H. Profiles of the biosynthesis and metabolism of pyridine nucleotides in potatoes (Solanum tuberosum L.) [J]. Planta, 2009, 231(1): 35 − 45. doi:  10.1007/s00425-009-1023-2
[32] WAGNER R, FETH F, WAGNER K G. Regulation in tobacco callus of enzyme activities of the nicotine pathway: II. The pyridine-nucleotide cycle [J]. Planta, 1986, 168(3): 408 − 413. doi:  10.1007/BF00392369